This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280071 #10 May 27 2025 18:17:07 %S A280071 1,12,232,4621,92181,1838992,36687652,731914041,14601593161, %T A280071 291299949172,5811397390272,115936647856261,2312921559734941, %U A280071 46142494546842552,920536969377116092,18364596892995479281,366371400890532469521,7309063420917653911132 %N A280071 Indices of 11-gonal numbers (A051682) that are also centered 11-gonal numbers (A060544). %C A280071 Also positive integers x in the solutions to 9*x^2 - 11*y^2 - 7*x + 11*y - 2 = 0, the corresponding values of y being A280072. %H A280071 Colin Barker, <a href="/A280071/b280071.txt">Table of n, a(n) for n = 1..750</a> %H A280071 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (21,-21,1). %F A280071 a(n) = (14 + (11-3*sqrt(11))*(10+3*sqrt(11))^n + (10+3*sqrt(11))^(-n)*(11+3*sqrt(11)))/36. %F A280071 a(n) = 21*a(n-1) - 21*a(n-2) + a(n-3) for n>3. %F A280071 G.f.: x*(1 - 9*x + x^2) / ((1 - x)*(1 - 20*x + x^2)). %e A280071 12 is in the sequence because the 12th 11-gonal number is 606, which is also the 11th centered 11-gonal number. %t A280071 LinearRecurrence[{21,-21,1},{1,12,232},20] (* _Harvey P. Dale_, May 27 2025 *) %o A280071 (PARI) Vec(x*(1 - 9*x + x^2) / ((1 - x)*(1 - 20*x + x^2)) + O(x^30)) %Y A280071 Cf. A051682, A060544, A131215, A280072 %K A280071 nonn,easy %O A280071 1,2 %A A280071 _Colin Barker_, Dec 25 2016