This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280077 #30 Sep 08 2022 08:46:18 %S A280077 1,5,10,21,28,48,57,83,101,129,142,197,212,248,283,340,359,431,452, %T A280077 529,574,626,651,781,819,879,937,1036,1067,1207,1240,1360,1425,1501, %U A280077 1564,1762,1801,1885,1960,2142,2185,2365,2410,2553,2679,2779,2828,3113,3179 %N A280077 Partial sums of A007429 (Sum_{d|n} sigma(d)). %C A280077 sigma(n) is the sum of the divisors of n (A000203). %H A280077 Vaclav Kotesovec, <a href="/A280077/b280077.txt">Table of n, a(n) for n = 1..10000</a> %F A280077 a(n) = Sum_{i=1..n} A007429(i). %F A280077 a(n) = Sum_{k=1..n} A000203(k) * floor(n/k). - _Daniel Suteu_, May 28 2018 %F A280077 a(n) = Sum_{k=1..n} A000005(k)/2 * floor(n/k) * floor(1+n/k). - _Daniel Suteu_, May 28 2018 %F A280077 a(n) ~ Pi^4 * n^2 / 72. - _Vaclav Kotesovec_, Nov 06 2018 %F A280077 G.f.: (1/(1-x)) * Sum_{k>=1} sigma(k) * x^k/(1 - x^k). - _Seiichi Manyama_, Jul 24 2022 %o A280077 (Magma) [&+[&+[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]] %o A280077 (PARI) a(n) = sum(k=1, n, sumdiv(k, d, sigma(d))); \\ _Michel Marcus_, May 29 2018 %o A280077 (PARI) my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)*x^k/(1-x^k))/(1-x)) \\ _Seiichi Manyama_, Jul 24 2022 %Y A280077 Cf. A000203, A237349 (partial sums of A211776), A280078 (partial products of A007429). %K A280077 nonn %O A280077 1,2 %A A280077 _Jaroslav Krizek_, Dec 25 2016