This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280087 #17 Sep 08 2022 08:46:18 %S A280087 14,1334,1634,2685,33998,42818,84134,122073,166934,289454,383594, %T A280087 440013,544334,605985,649154,655005,1642154,2284814,2913105,3571905, %U A280087 3682622,5181045,6771405,10074477,10195305,12825266,15751533,17714486,17727554,19886385,25096665,33422277,34577834,34883654 %N A280087 Numbers n such that Product_{d|n} sigma(d) = Product_{d|n+1} sigma(d). %C A280087 sigma(n) is the sum of the divisors of n (A000203). %C A280087 Numbers n such that A206032(n) = A206032(n+1). %e A280087 14 is a term because Product_{d|14} sigma(d) = 1 * 3 * 8 * 24 = Product_{d|15} sigma(d) = 1 * 4 * 6 * 24 = 576. %t A280087 Select[Range[5000], Times @@ DivisorSigma[1, Divisors[#]] == Times @@ DivisorSigma[1, Divisors[# + 1]] &] (* _G. C. Greubel_, Dec 26 2016 *) %o A280087 (Magma) [n: n in [1..1000] | &*[SumOfDivisors(d): d in Divisors(n)] eq &*[SumOfDivisors(d): d in Divisors(n+1)]] %o A280087 (PARI) isok(n) = my(d = divisors(n), dd = divisors(n+1)); prod(k=1, #d, sigma(d[k])) == prod(k=1, #dd, sigma(dd[k])); \\ _Michel Marcus_, Dec 26 2016 %Y A280087 Cf. A000203, A206032. %K A280087 nonn %O A280087 1,1 %A A280087 _Jaroslav Krizek_, Dec 25 2016 %E A280087 More terms from _Michel Marcus_, Dec 26 2016