cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280096 Engel expansion of 1/phi to the base Pi.

This page as a plain text file.
%I A280096 #8 Jul 23 2025 15:41:16
%S A280096 6,18,95,340,9492,133706,1693729,104107693,692068995,3295399249,
%T A280096 61983607042,294907287147,3866887203952,1457331336561977,
%U A280096 13487103824303426,2733476358186221751,10531585738509590966,622459086032261357787,13355793438644297530372,210369234254618733763935
%N A280096 Engel expansion of 1/phi to the base Pi.
%H A280096 G. C. Greubel, <a href="/A280096/b280096.txt">Table of n, a(n) for n = 0..250</a>
%H A280096 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PierceExpansion.html">Pierce Expansion</a>
%H A280096 Wikipedia, <a href="http://en.wikipedia.org/wiki/Engel_expansion">Engel Expansion</a>
%e A280096 1/phi = Pi/6 + Pi^2/(6*18) + Pi^3/(6*18*95) + ...
%t A280096 EngelExp[A_, n_] := Join[Array[Pi &, Floor[A]], First@Transpose@
%t A280096 NestList[{Ceiling[Pi/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/Pi} &, {Ceiling[Pi/(A - Floor[A])], (A - Floor[A])/Pi}, n - 1]]; EngelExp[N[2/(1 + Sqrt[5]), 7!], 20]
%Y A280096 Cf. A232325.
%K A280096 nonn
%O A280096 0,1
%A A280096 _G. C. Greubel_, Dec 25 2016