This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280104 #33 Aug 04 2025 18:43:37 %S A280104 2,1,3,2,7,11,2,29,47,2,3,199,2,521,3,2,2207,3571,2,9349,7,2,3,139,2, %T A280104 11,3,2,7,59,2,3010349,1087,2,3,11,2,54018521,3,2,47,370248451,2,6709, %U A280104 7,2,3,6643838879,2,29,3,2,7,119218851371,2,11,47,2,3,709,2 %N A280104 a(n) = smallest prime factor of n-th Lucas number A000032(n), or 1 if there are none. %C A280104 From _Robert Israel_, Jan 05 2017: (Start) %C A280104 If m and n are odd, m > 1 and m | n, then a(n) <= a(m). %C A280104 a(n) = 2 if and only if 3 | n. %C A280104 a(n) = 3 if and only if n is in A091999. %C A280104 a(n) is never 5. %C A280104 a(n) = 7 if and only if n is in A259755. %C A280104 a(n) = A000032(n) if and only if n is in A001606. %C A280104 (End) %H A280104 Robert Israel, <a href="/A280104/b280104.txt">Table of n, a(n) for n = 0..1000</a> %H A280104 <a href="http://mersennus.net/fibonacci/">Fibonacci and Lucas Factorizations</a> %F A280104 a(n) = A020639(A000032(n)). - _Felix Fröhlich_, Dec 26 2016 %p A280104 lucas:= n -> combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1): %p A280104 spf:= proc(n) local F; %p A280104 F:= remove(hastype,ifactors(n,easy)[2],symbol); %p A280104 if F <> [] then return min(seq(f[1],f=F)) fi; %p A280104 min(numtheory:-factorsec(n)) %p A280104 end proc: %p A280104 spf(1):= 1: %p A280104 map(spf @ lucas, [$0..200]); # _Robert Israel_, Jan 05 2017 %t A280104 f[n_]:=(FactorInteger@LucasL@n)[[1, 1]]; Array[f, 60, 0] %o A280104 (Magma) [2,1] cat [Minimum(PrimeDivisors(Lucas(n))): n in [2..60]]; %o A280104 (PARI) a000032(n) = fibonacci(n+1)+fibonacci(n-1) %o A280104 a(n) = if(a000032(n-1)==1, 1, factor(a000032(n-1))[1, 1]) \\ _Felix Fröhlich_, Dec 26 2016 %Y A280104 Cf. A000032, A001606, A020639, A079451 (same for largest prime factor), A091999, A139044, A144293, A259755, A279623. %Y A280104 Column k=2 of A238899 (for n>=2). %K A280104 nonn %O A280104 0,1 %A A280104 _Vincenzo Librandi_, Dec 26 2016 %E A280104 Offset changed from _Bruno Berselli_, Dec 27 2016