This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280151 #10 Feb 16 2025 08:33:38 %S A280151 1,0,0,1,0,1,1,1,1,2,2,2,3,3,4,4,5,6,7,8,9,10,12,14,15,18,20,23,26,29, %T A280151 33,37,42,46,53,58,66,74,81,91,101,113,124,139,153,169,188,207,228, %U A280151 252,278,304,336,369,405,444,487,533,583,640,697,763,832,908,990,1078,1175,1278 %N A280151 Expansion of Product_{k>=1} 1/(1 - floor(1/omega(2*k+1))*x^(2*k+1)), where omega() is the number of distinct prime factors (A001221). %C A280151 Number of partitions of n into odd prime powers (1 excluded). %H A280151 G. C. Greubel, <a href="/A280151/b280151.txt">Table of n, a(n) for n = 0..1000</a> %H A280151 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePower.html">Prime Power</a> %H A280151 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A280151 G.f.: Product_{k>=1} 1/(1 - floor(1/omega(2*k+1))*x^(2*k+1)). %e A280151 a(12) = 3 because we have [9, 3], [7, 5], [3, 3, 3, 3]. %t A280151 nmax = 67; CoefficientList[Series[Product[1/(1 - Floor[1/PrimeNu[2 k + 1]] x^(2 k + 1)), {k, 1, nmax}], {x, 0, nmax}], x] %Y A280151 Cf. A001221, A018819, A023894, A061345, A246655, A280152. %K A280151 nonn %O A280151 0,10 %A A280151 _Ilya Gutkovskiy_, Dec 27 2016