A280153 Number of ways to write n as x^3 + 2*y^3 + z^2 + 4^k, where x is a positive integer and y,z,k are nonnegative integers.
0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 3, 2, 3, 2, 2, 2, 1, 5, 2, 3, 4, 2, 3, 1, 4, 3, 4, 5, 4, 5, 2, 4, 4, 6, 3, 1, 6, 1, 2, 4, 3, 4, 3, 6, 3, 3, 4, 3, 5, 2, 3, 1, 5, 3, 2, 5, 2, 3, 3, 6, 3, 1, 5, 3, 4, 6, 6, 8, 7, 4, 5, 6, 3, 5, 7, 5, 3, 3, 5, 4
Offset: 1
Keywords
Examples
a(7) = 1 since 7 = 1^3 + 2*1^3 + 0^2 + 4^1. a(10) = 1 since 10 = 2^3 + 2*0^3 + 1^2 + 4^0. a(17) = 1 since 17 = 1^3 + 2*0^3 + 0^2 + 4^2. a(24) = 1 since 24 = 2^3 + 2*0^3 + 0^2 + 4^2. a(36) = 1 since 36 = 2^3 + 2*1^3 + 5^2 + 4^0. a(38) = 1 since 38 = 1^3 + 2*0^3 + 6^2 + 4^0. a(52) = 1 since 52 = 3^3 + 2*0^3 + 3^2 + 4^2. a(62) = 1 since 62 = 2^3 + 2*1^3 + 6^2 + 4^2. a(115) = 1 since 115 = 2^3 + 2*3^3 + 7^2 + 4^1. a(136) = 1 since 136 = 2^3 + 2*0^3 + 8^2 + 4^3. a(185) = 1 since 185 = 3^3 + 2*3^3 + 10^2 + 4^1. a(990) = 1 since 990 = 7^3 + 2*3^3 + 23^2 + 4^3.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; Do[r=0;Do[If[SQ[n-4^k-x^3-2y^3],r=r+1],{k,0,Log[4,n]},{x,1,(n-4^k)^(1/3)},{y,0,((n-4^k-x^3)/2)^(1/3)}];Print[n," ",r];Continue,{n,1,80}]
Comments