cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280153 Number of ways to write n as x^3 + 2*y^3 + z^2 + 4^k, where x is a positive integer and y,z,k are nonnegative integers.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 3, 2, 3, 2, 2, 2, 1, 5, 2, 3, 4, 2, 3, 1, 4, 3, 4, 5, 4, 5, 2, 4, 4, 6, 3, 1, 6, 1, 2, 4, 3, 4, 3, 6, 3, 3, 4, 3, 5, 2, 3, 1, 5, 3, 2, 5, 2, 3, 3, 6, 3, 1, 5, 3, 4, 6, 6, 8, 7, 4, 5, 6, 3, 5, 7, 5, 3, 3, 5, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 27 2016

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 3, 4, 7, 10, 17, 24, 36, 38, 52, 62, 115, 136, 185, 990.
(ii) Each positive integer n can be written as x^2 + 2*y^2 + z^3 + 8^k with x,y,z,k nonnegative integers.
(iii) Let a,b,c be positive integers with b <= c. Then any positive integer can be written as a*x^3 + b*y^2 + c*z^2 + 4^k with x,y,z,k nonnegative integers, if and only if (a,b,c) is among the following triples: (1,1,1), (1,1,2), (1,1,3), (1,1,5), (1,1,6), (1,2,3), (1,2,5), (2,1,1), (2,1,2), (2,1,3), (2,1,6), (4,1,2), (5,1,2), (8,1,2), (9,1,2).
We have verified that a(n) > 0 for all n = 2..10^6, and that part (ii) of the conjecture holds for all n = 1..10^6.
For any positive integer n, it is easy to see that at least one of n-1, n-8, n-64 is not of the form 4^k*(8m+7) with k and m nonnegative integers, thus, by the Gauss-Legendre theorem on sums of three squares, n = x^2 + y^2 + z^2 + 8^k for some nonnegative integers x,y,z and k < 3.
See also A280356 for a similar conjecture involving powers of two.

Examples

			a(7) = 1 since 7 = 1^3 + 2*1^3 + 0^2 + 4^1.
a(10) = 1 since 10 = 2^3 + 2*0^3 + 1^2 + 4^0.
a(17) = 1 since 17 = 1^3 + 2*0^3 + 0^2 + 4^2.
a(24) = 1 since 24 = 2^3 + 2*0^3 + 0^2 + 4^2.
a(36) = 1 since 36 = 2^3 + 2*1^3 + 5^2 + 4^0.
a(38) = 1 since 38 = 1^3 + 2*0^3 + 6^2 + 4^0.
a(52) = 1 since 52 = 3^3 + 2*0^3 + 3^2 + 4^2.
a(62) = 1 since 62 = 2^3 + 2*1^3 + 6^2 + 4^2.
a(115) = 1 since 115 = 2^3 + 2*3^3 + 7^2 + 4^1.
a(136) = 1 since 136 = 2^3 + 2*0^3 + 8^2 + 4^3.
a(185) = 1 since 185 = 3^3 + 2*3^3 + 10^2 + 4^1.
a(990) = 1 since 990 = 7^3 + 2*3^3 + 23^2 + 4^3.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
    Do[r=0;Do[If[SQ[n-4^k-x^3-2y^3],r=r+1],{k,0,Log[4,n]},{x,1,(n-4^k)^(1/3)},{y,0,((n-4^k-x^3)/2)^(1/3)}];Print[n," ",r];Continue,{n,1,80}]