A280155 Number of n X 2 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 4, 8, 18, 40, 92, 208, 470, 1060, 2384, 5352, 11992, 26824, 59906, 133592, 297510, 661720, 1470062, 3262264, 7231940, 16016596, 35439722, 78349800, 173074816, 382029988, 842648168, 1857362384, 4091321478, 9006604780, 19815365450
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..1 ..0..0. .0..0. .0..1. .0..0. .0..1. .1..0. .0..0. .0..1. .1..1. .0..0 ..1..1. .1..0. .1..1. .0..0. .0..0. .0..0. .0..0. .1..1. .1..0. .0..1 ..1..0. .0..0. .0..0. .0..1. .0..0. .0..0. .1..1. .1..0. .0..0. .1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A280161.
Formula
Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3) - 6*a(n-4) - 4*a(n-5) - a(n-6) for n>8.
Empirical g.f.: 2*x^2*(2 - 5*x^2 - 6*x^3 - x^4 + 2*x^5 + x^6) / (1 - x - 2*x^2 - x^3)^2. - Colin Barker, Feb 13 2019