cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A280155 Number of n X 2 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 4, 8, 18, 40, 92, 208, 470, 1060, 2384, 5352, 11992, 26824, 59906, 133592, 297510, 661720, 1470062, 3262264, 7231940, 16016596, 35439722, 78349800, 173074816, 382029988, 842648168, 1857362384, 4091321478, 9006604780, 19815365450
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2016

Keywords

Examples

			Some solutions for n=4:
..0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..0. .0..1
..0..0. .0..0. .0..1. .0..0. .0..1. .1..0. .0..0. .0..1. .1..1. .0..0
..1..1. .1..0. .1..1. .0..0. .0..0. .0..0. .0..0. .1..1. .1..0. .0..1
..1..0. .0..0. .0..0. .0..1. .0..0. .0..0. .1..1. .1..0. .0..0. .1..1
		

Crossrefs

Column 2 of A280161.

Formula

Empirical: a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3) - 6*a(n-4) - 4*a(n-5) - a(n-6) for n>8.
Empirical g.f.: 2*x^2*(2 - 5*x^2 - 6*x^3 - x^4 + 2*x^5 + x^6) / (1 - x - 2*x^2 - x^3)^2. - Colin Barker, Feb 13 2019

A280156 Number of nX3 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 8, 31, 94, 305, 950, 2901, 8728, 26068, 77326, 228367, 671446, 1967328, 5745190, 16730555, 48594066, 140815777, 407186706, 1175159395, 3385527188, 9737463217, 27964574958, 80197812317, 229694924100, 657073271390, 1877519404364
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2016

Keywords

Comments

Column 3 of A280161.

Examples

			Some solutions for n=4
..0..0..0. .0..0..0. .0..1..1. .0..1..1. .0..1..1. .0..0..0. .0..0..1
..0..0..0. .1..1..0. .0..1..1. .0..0..1. .0..1..1. .0..0..0. .0..0..0
..0..0..1. .1..1..1. .0..1..1. .0..0..1. .0..0..0. .0..0..0. .1..1..0
..0..0..0. .1..1..1. .0..0..1. .0..1..1. .1..0..0. .0..0..1. .1..1..0
		

Crossrefs

Cf. A280161.

Formula

Empirical: a(n) = 6*a(n-1) -7*a(n-2) -18*a(n-3) +45*a(n-4) -22*a(n-5) -38*a(n-6) +74*a(n-7) -39*a(n-8) -2*a(n-9) +4*a(n-10) +2*a(n-11) -8*a(n-12) -4*a(n-13) -a(n-14) for n>19

A280157 Number of nX4 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 18, 94, 424, 1854, 7628, 30874, 123312, 488256, 1920790, 7513678, 29249892, 113386708, 437908264, 1685639238, 6469357240, 24762845248, 94557090250, 360277506538, 1369975634630, 5199885300498, 19703519987286, 74545164231536
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2016

Keywords

Comments

Column 4 of A280161.

Examples

			Some solutions for n=4
..0..0..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1
..0..1..1..0. .0..0..0..1. .0..0..0..1. .0..1..0..0. .0..0..1..1
..1..1..1..0. .1..1..1..1. .0..0..0..1. .0..0..0..1. .1..0..1..1
..1..1..0..0. .1..1..0..0. .0..0..0..1. .0..0..1..1. .0..0..0..0
		

Crossrefs

Cf. A280161.

Formula

Empirical: a(n) = 8*a(n-1) -8*a(n-2) -74*a(n-3) +144*a(n-4) +268*a(n-5) -631*a(n-6) -714*a(n-7) +1344*a(n-8) +2362*a(n-9) -2134*a(n-10) -6068*a(n-11) +2745*a(n-12) +9240*a(n-13) +321*a(n-14) -10644*a(n-15) -5878*a(n-16) +9474*a(n-17) +4820*a(n-18) -1796*a(n-19) -2276*a(n-20) -1436*a(n-21) +58*a(n-22) +800*a(n-23) +187*a(n-24) -46*a(n-25) -43*a(n-26) -28*a(n-27) +a(n-28) +6*a(n-29) -a(n-30) for n>36

A280158 Number of nX5 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 40, 305, 1854, 10677, 58852, 318220, 1695030, 8941285, 46760710, 242970442, 1255597078, 6458360287, 33085037590, 168885713050, 859370947890, 4360537440625, 22069557056618, 111441207638795, 561547964534696
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2016

Keywords

Comments

Column 5 of A280161.

Examples

			Some solutions for n=4
..0..0..0..1..1. .0..0..1..1..1. .0..0..1..1..1. .0..0..1..1..1
..1..1..0..0..1. .0..0..1..1..1. .0..1..1..0..0. .0..0..1..1..1
..1..1..0..0..1. .1..0..0..0..1. .1..1..0..0..0. .0..0..1..0..0
..1..0..0..1..1. .0..0..0..0..1. .1..1..0..0..0. .0..0..0..0..0
		

Crossrefs

Cf. A280161.

Formula

Empirical recurrence of order 70 (see link above)

A280159 Number of nX6 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 92, 950, 7628, 58852, 434790, 3138340, 22348406, 157294986, 1097158250, 7598014364, 52296147282, 358119530526, 2441393217986, 16579221466148, 112199621622362, 756987753165838, 5093205986747148, 34183505883347834
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2016

Keywords

Comments

Column 6 of A280161.

Examples

			Some solutions for n=4
..0..0..0..1..0..0. .0..0..0..0..0..0. .0..0..1..0..1..1. .0..0..0..0..0..1
..0..0..1..1..0..0. .0..0..1..1..1..0. .0..1..1..1..1..0. .1..1..1..0..1..1
..0..1..1..0..1..1. .0..1..1..1..1..0. .1..1..1..0..0..0. .1..1..1..0..1..1
..1..1..0..0..1..1. .0..1..1..1..0..0. .1..1..0..0..0..0. .0..1..0..0..0..0
		

Crossrefs

Cf. A280161.

A280160 Number of nX7 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 208, 2901, 30874, 318220, 3138340, 30089398, 285461736, 2671391625, 24767920958, 227975959120, 2085061428192, 18968539604655, 171769706597400, 1549174969429286, 13922125649869206, 124717748809003344
Offset: 1

Views

Author

R. H. Hardin, Dec 27 2016

Keywords

Comments

Column 7 of A280161.

Examples

			Some solutions for n=4
..0..0..0..0..0..0..0. .0..1..0..0..0..0..1. .0..0..1..0..0..0..0
..0..0..0..0..1..0..0. .0..0..0..0..0..1..1. .0..1..1..0..0..0..1
..0..0..1..1..0..0..1. .0..0..0..0..1..1..0. .1..1..1..0..1..1..1
..0..1..1..1..0..1..1. .0..0..0..1..1..0..0. .1..1..1..1..1..1..1
		

Crossrefs

Cf. A280161.
Showing 1-6 of 6 results.