cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280172 Lexicographically earliest table of positive integers read by antidiagonals such that no row or column contains a repeated term.

This page as a plain text file.
%I A280172 #99 Jun 11 2025 17:21:12
%S A280172 1,2,2,3,1,3,4,4,4,4,5,3,1,3,5,6,6,2,2,6,6,7,5,7,1,7,5,7,8,8,8,8,8,8,
%T A280172 8,8,9,7,5,7,1,7,5,7,9,10,10,6,6,2,2,6,6,10,10,11,9,11,5,3,1,3,5,11,9,
%U A280172 11,12,12,12,12,4,4,4,4,12,12,12,12,13,11,9,11,13,3,1,3,13,11,9,11,13
%N A280172 Lexicographically earliest table of positive integers read by antidiagonals such that no row or column contains a repeated term.
%C A280172 The table is symmetrical about the main diagonal.
%C A280172 The first row/column is A000027.
%C A280172 The second row/column is A103889.
%C A280172 The third row/column is A256008.
%C A280172 The fourth row/column is A113778.
%C A280172 Conjecture: The (2^k)-th antidiagonal consists entirely of 2^k.
%C A280172 Similar in spirit to A269526, A274528. - _N. J. A. Sloane_, Dec 27 2016
%C A280172 From _Daniel Forgues_, Sep 14 2019: (Start)
%C A280172 Plot of a(n) looks like a transform of a Sierpinski equilateral triangle.
%C A280172 Considering t(a(n)) = a(n)*(a(n)+1)/2: top edge of plot would be linear, but left & right sides of [concave curved] triangles would grow/decrease quadratically. a(n), a univalued sequence, tries to plot a Sierpinski triangle, which requires a multivalued sequence: a(n) uses t(2^k) terms to draw a Sierpinski triangle of width & height 2^k.
%C A280172 Conjecture: T(2n, k) = 2 * T(n, ceiling(k/2)), n >= 1, 1 <= k <= 2n. E.g.
%C A280172   row  5:      5,     3,    1,    3,     5
%C A280172   row 10:   10, 10, 6, 6, 2, 2, 6, 6, 10, 10 (End)
%C A280172 From _Daniel Forgues_, Sep 15 2019: (Start)
%C A280172 Conjectured algorithm for equilateral triangle (1-indexed rows and row terms), whose concatenated rows give this sequence: T(1, 1) = 1;
%C A280172 For each k >= 0, the height of the Sierpinski triangle is doubled:
%C A280172 * Left and right triangles: for 1 <= i <= 2^k, 1 <= j <= i:
%C A280172   T(2^k + i, j) = T(2^k + i, 2^k + i + 1 - j) = T(i, j) + 2^k;
%C A280172 * Central triangle: for 1 <= i <= 2^k - 1, 1 <= j <= i:
%C A280172   T(2^(k+1) - i, 2^k - i + j) = T(i, j).
%C A280172 Left and right triangles copies rows 1 to 2^k, terms augmented by 2^k.
%C A280172 Central triangle is mirrored through row 2^k.
%C A280172 When n is t(2^k), k >= 0, i.e., a triangular number with index a power of 2, a phase of the Sierpinski triangle plot is neatly completed. (End)
%H A280172 Peter Kagey, <a href="/A280172/b280172.txt">Table of n, a(n) for n = 1..32896</a> (first 256 rows, flattened)
%H A280172 Eric Gottlieb, Matjaž Krnc, and Peter Muršič, <a href="https://arxiv.org/abs/2506.04991">Nim on Integer Partitions and Hyperrectangles</a>, arXiv:2506.04991 [math.CO], 2025. See p. 16.
%H A280172 Peter Kagey, <a href="/A280172/a280172_1.png">Bitmap of first 2^10 = 1024 rows and columns</a>. (Black pixels correspond to numbers divisible by 3; white pixels to all other numbers.)
%H A280172 Rémy Sigrist, <a href="/A280172/a280172.png">Scatterplot of (n, a(n)*(a(n)+1)/2) for n = 1..2100225</a>
%F A280172 T(n, k) = ( (n-1) XOR (k-1) ) + 1 = A003987(n-1, k-1) + 1. - _Rémy Sigrist_, Sep 18 2019
%F A280172 a(n) = T(row, n - t(row - 1)), n >= 1, where row = ceiling((-1 + sqrt(1 + 8*n))/2) and t(i) = i*(i+1)/2. - _Daniel Forgues_, Sep 20 2019
%e A280172 As table (upper anti-triangular matrix) (concat. antidiagonals):
%e A280172   1 2 3 4 5 6 7 8
%e A280172   2 1 4 3 6 5 8
%e A280172   3 4 1 2 7 8
%e A280172   4 3 2 1 8
%e A280172   5 6 7 8
%e A280172   6 5 8
%e A280172   7 8
%e A280172   8
%e A280172 As equilateral triangle (concat. rows): (see formula section)
%e A280172          1
%e A280172         2 2
%e A280172        3 1 3
%e A280172       4 4 4 4
%e A280172      5 3 1 3 5
%e A280172     6 6 2 2 6 6
%e A280172    7 5 7 1 7 5 7
%e A280172   8 8 8 8 8 8 8 8
%e A280172 Lexicographically earliest equilateral triangle of positive integers read by rows such that no diagonal or antidiagonal contains a repeated term.
%p A280172 A280172 := (n, k) -> 1 + Bits:-Xor(k-1, n-k):
%p A280172 seq(print(seq(A280172(n, k), k=1..n)), n=1..14); # _Peter Luschny_, Sep 21 2019
%Y A280172 Cf. A003987, A269526, A274528.
%Y A280172 Rows (or columns) 1 to 4: A000027, A103889, A256008, A113778.
%K A280172 nonn,tabl,look
%O A280172 1,2
%A A280172 _Peter Kagey_, Dec 27 2016