This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280181 #47 Oct 23 2022 05:27:38 %S A280181 1,17,561,19041,646817,21972721,746425681,25356500417,861374588481, %T A280181 29261379507921,994025528680817,33767606595639841,1147104598723073761, %U A280181 38967788749988868017,1323757712900898438801,44968794449880558051201,1527615253583038075302017 %N A280181 Indices of centered 9-gonal numbers (A060544) that are also squares (A000290). %C A280181 Also positive integers y in the solutions to 2*x^2 - 9*y^2 + 9*y - 2 = 0, the corresponding values of x being A046176. %C A280181 Consider all ordered triples of consecutive integers (k, k+1, k+2) such that k is a square and k+1 is twice a square; then the values of k are the squares of the NSW numbers (A002315), the values of k+1 are twice the squares of the odd Pell numbers (A001653), and the values of k+2 are thrice the terms of this sequence. (See the Example section.) - _Jon E. Schoenfield_, Sep 06 2019 %H A280181 Colin Barker, <a href="/A280181/b280181.txt">Table of n, a(n) for n = 1..650</a> %H A280181 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1). %F A280181 a(n) = (6 + (3-2*sqrt(2))*(17+12*sqrt(2))^(-n) + (3+2*sqrt(2))*(17+12*sqrt(2))^n) / 12. %F A280181 a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3) for n>3. %F A280181 G.f.: x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)). %F A280181 a(n) = (A002315(n-1)^2 + 2)/3 = (2*A001653(n)^2 + 1)/3. - _Jon E. Schoenfield_, Sep 06 2019 %F A280181 a(n) = A077420(floor((n-1)/2)) * A056771(floor(n/2)). - _Jon E. Schoenfield_, Sep 08 2019 %F A280181 E.g.f.: -1+(1/12)*(6*exp(x)+(3-2*sqrt(2))*exp((17-12*sqrt(2))*x)+(3+2*sqrt(2))*exp((17+12*sqrt(2))*x)). - _Stefano Spezia_, Sep 08 2019 %F A280181 Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2) = A156164. - _Andrea Pinos_, Oct 07 2022 %e A280181 17 is in the sequence because the 17th centered 9-gonal number is 1225, which is also the 35th square. %e A280181 From _Jon E. Schoenfield_, Sep 06 2019: (Start) %e A280181 The following table illustrates the relationship between the NSW numbers (A002315), the odd Pell numbers (A001653), and the terms of this sequence: %e A280181 . %e A280181 | A002315(n-1)^2 | 2*A001653(n)^2 | %e A280181 n | = 3*a(n) - 2 | = 3*a(n) - 1 | 3*a(n) %e A280181 --+------------------+-------------------+------------------- %e A280181 1 | 1^2 = 1 | 1^2*2 = 2 | 1*3 = 3 %e A280181 2 | 7^2 = 49 | 5^2*2 = 50 | 17*3 = 51 %e A280181 3 | 41^2 = 1681 | 29^2*2 = 1682 | 561*3 = 1683 %e A280181 4 | 239^2 = 57121 | 169^2*2 = 57122 | 19041*3 = 57123 %e A280181 5 | 1393^2 = 1940449 | 985^2*2 = 1940450 | 646817*3 = 1940451 %e A280181 (End) %t A280181 LinearRecurrence[{35, -35, 1}, {1, 17, 561}, 50] (* _G. C. Greubel_, Dec 28 2016 *) %o A280181 (PARI) Vec(x*(1 - 18*x + x^2) / ((1 - x)*(1 - 34*x + x^2)) + O(x^20)) %Y A280181 Cf. A000290, A001653, A002315, A046176, A046177, A056771, A060544, A077420. %Y A280181 Cf. A156164. %K A280181 nonn,easy %O A280181 1,2 %A A280181 _Colin Barker_, Dec 28 2016