This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280192 #41 Apr 20 2023 11:26:38 %S A280192 1,0,1,1,0,3,1,9,0,19,10,12,114,0,219,31,300,190,2190,0,4231,361,1158, %T A280192 10140,4380,63465,0,130023,2164,26341,46389,451920,148085,2730483,0, %U A280192 6129859,32663,192496,1930852,2381624,27601000,7281288,171636052,0,431723379 %N A280192 Triangle read by rows: T(n,k) = number of topologies on an n-set X such that there are exactly k elements in X that are topologically distinguishable, n >= 0, 0 <= k <= n. %C A280192 T(n,0) = A280202(n) is the number of topologies on an n-set X such that for all x in X there exists a y in X such that x and y have exactly the same neighborhoods. %C A280192 Equivalently, T(n,k) is the number of labeled quasi-orders R on [n] with exactly k singletons in the equivalence relation R intersect R^(-1), cf. Schein link. - _Geoffrey Critzer_, Apr 18 2023 %H A280192 Alois P. Heinz, <a href="/A280192/b280192.txt">Rows n = 0..18, flattened</a> %H A280192 B. M. Schein, <a href="https://doi.org/10.3792/pja/1195520400">A construction for idempotent binary relations</a>, Proc. Japan Acad., Vol. 46, No. 3 (1970), pp. 246-247. %H A280192 Wikipedia, <a href="https://en.wikipedia.org/wiki/Topological_indistinguishability">Topological indistinguishability</a>. %F A280192 E.g.f.: A(exp(x) - 1 - x + y*x) where A(x) is the e.g.f. for A001035. %F A280192 Sum_{k=0..n} T(n,k)*2^k = A006905(n). - _Geoffrey Critzer_, Apr 18 2023 %e A280192 Triangle begins: %e A280192 1; %e A280192 0, 1; %e A280192 1, 0, 3; %e A280192 1, 9, 0, 19; %e A280192 10, 12, 114, 0, 219; %e A280192 31, 300, 190, 2190, 0, 4231; %e A280192 361, 1158, 10140, 4380, 63465, 0, 130023; %e A280192 2164, 26341, 46389, 451920, 148085, 2730483, 0, 6129859; %e A280192 ... %t A280192 A001035 = Cases[Import["https://oeis.org/A001035/b001035.txt", "Table"], {_, _}][[All, 2]]; %t A280192 lg = Length[A001035]; %t A280192 A[x_] = Sum[A001035[[n + 1]] x^n/n!, {n, 0, lg - 1}]; %t A280192 CoefficientList[#, y]& /@ (CoefficientList[A[Exp[x] - 1 - x + y*x] + O[x]^lg, x]*Range[0, lg - 1]!) // Flatten (* _Jean-François Alcover_, Jan 01 2020 *) %Y A280192 Right border gives A001035. %Y A280192 Row sums give A000798. %Y A280192 Column k=0 gives A280202. %Y A280192 Cf. A006905. %K A280192 nonn,tabl %O A280192 0,6 %A A280192 _Geoffrey Critzer_, Dec 28 2016