cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280201 Let the smallest of three successive primes p, p+d, p+2d be a so-called d-triple and b(n) the sequence of d-triples with d<>6. Then a(n) is the number of 6-triples between b(n) and b(n+1).

Original entry on oeis.org

3, 15, 13, 3, 19, 5, 4, 0, 1, 8, 8, 13, 0, 4, 2, 2, 1, 5, 0, 2, 0, 1, 0, 1, 0, 1, 1, 4, 5, 1, 1, 8, 3, 1, 1, 3, 3, 2, 4, 2, 2, 2, 0, 1, 2, 5, 1, 1, 2, 2
Offset: 1

Views

Author

Gerhard Kirchner, Dec 28 2016

Keywords

Comments

The sequence of all d-triples A122535(n) = (3), 47, 151, 167, (199), 251, 257, 367, 557, 587, 601, 647, 727, 941, 971, 1097, 1117, 1181, 1217, 1361, (1499), ... is the union of A047948(n) with 6-triples and b(n) with terms in brackets. There are three 6-triples between 3 and 199 and 15 6-triples between 199 and 1499. Thus a(1)=3 (see example) and a(2)=15.
The average of the first 10 terms is (3+15+13+3+19+5+4+0+1+8)/10 = 7.1. This means that, in this section, the 6-triples are more than 7 times as frequent as the other d-triples as a whole. Let us compare longer sections of a(n) with different magnitudes of n, for example (with S(n)=sum(a(k),k,1,n)/n): n <= 10000 100000 733158
S(n) = 1.28 0.98 0.81
n=733158 was the largest available index when I analyzed a pool of primes <=10^9.
Result: For small n, 6-triples are more frequent than the whole of other d-triples; for large n, the reverse is true. Does S(n) tend to zero? It seems so, see link "Tendency of a(n)". - Gerhard Kirchner, Dec 28 2016

Examples

			The first d-triples are 3 (,5,7, d=2); 47 (,53,59, d=6); 151 (,157,163, d=6); 167 (,173,179, d=6); 199 (,211,223, d=12). So there are three 6-triples between the 2-triple and the 12-triple: a(1)=3.
		

Crossrefs