A280201 Let the smallest of three successive primes p, p+d, p+2d be a so-called d-triple and b(n) the sequence of d-triples with d<>6. Then a(n) is the number of 6-triples between b(n) and b(n+1).
3, 15, 13, 3, 19, 5, 4, 0, 1, 8, 8, 13, 0, 4, 2, 2, 1, 5, 0, 2, 0, 1, 0, 1, 0, 1, 1, 4, 5, 1, 1, 8, 3, 1, 1, 3, 3, 2, 4, 2, 2, 2, 0, 1, 2, 5, 1, 1, 2, 2
Offset: 1
Keywords
Examples
The first d-triples are 3 (,5,7, d=2); 47 (,53,59, d=6); 151 (,157,163, d=6); 167 (,173,179, d=6); 199 (,211,223, d=12). So there are three 6-triples between the 2-triple and the 12-triple: a(1)=3.
Links
- Gerhard Kirchner, Table of n, a(n) for n = 1..10000
- Gerhard Kirchner, Tendency of a(n)
Comments