A280227 Number of n X 2 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 4, 6, 8, 14, 24, 42, 72, 124, 212, 362, 616, 1046, 1772, 2996, 5056, 8518, 14328, 24066, 40368, 67628, 113164, 189154, 315848, 526894, 878164, 1462372, 2433272, 4045694, 6721752, 11160282, 18517656, 30706396, 50888132, 84287066, 139531816
Offset: 1
Keywords
Examples
All solutions for n=4: ..0..0. .0..1. .0..0. .0..0. .0..0. .0..0. .0..1. .0..0 ..0..1. .1..1. .0..0. .0..0. .0..0. .1..0. .0..0. .0..0 ..0..0. .1..1. .0..1. .1..0. .0..0. .0..0. .0..0. .0..0 ..0..0. .1..1. .0..0. .0..0. .1..0. .0..0. .0..0. .0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 2 of A280233.
Formula
Empirical: a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>7.
Empirical g.f.: x^2*(1 - x)*(1 + x)*(2 - x - 2*x^2 - x^3) / (1 - x - x^2)^2. - Colin Barker, Feb 13 2019