A280229 Number of nX4 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
2, 8, 16, 48, 116, 288, 678, 1600, 3766, 8704, 20040, 45904, 104540, 237268, 536526, 1209480, 2719500, 6099968, 13653798, 30504064, 68032030, 151493220, 336863254, 748075672, 1659257392, 3676182044, 8136355808, 17990500384, 39743338382
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..1..1 ..1..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..1..1 ..1..1..1..1. .0..1..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0 ..1..1..1..1. .1..1..1..1. .1..1..1..1. .0..1..1..1. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A280233.
Formula
Empirical: a(n) = 4*a(n-1) -10*a(n-3) -8*a(n-4) +14*a(n-5) +25*a(n-6) +6*a(n-7) -10*a(n-8) -30*a(n-9) -27*a(n-10) -10*a(n-11) +9*a(n-12) +10*a(n-13) +3*a(n-14) +4*a(n-15) -4*a(n-16) for n>19
Comments