A280230 Number of nX5 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
5, 14, 29, 116, 355, 1102, 3376, 9860, 29091, 84644, 244759, 704628, 2018512, 5761462, 16393387, 46508232, 131619423, 371638678, 1047214662, 2945399940, 8270156835, 23184841888, 64903418567, 181446963548, 506630797962
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..0..0..0..0. .0..1..0..0..0. .0..0..0..1..1. .0..0..1..1..1 ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..1. .0..0..1..1..1 ..1..1..0..0..0. .0..0..0..0..0. .1..1..1..1..1. .0..1..0..0..0 ..1..1..0..0..0. .0..0..0..0..0. .1..1..1..1..1. .0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A280233.
Formula
Empirical: a(n) = 4*a(n-1) +6*a(n-2) -28*a(n-3) -31*a(n-4) +78*a(n-5) +114*a(n-6) -90*a(n-7) -153*a(n-8) +66*a(n-9) -29*a(n-10) -246*a(n-11) +40*a(n-12) +278*a(n-13) -56*a(n-14) -114*a(n-15) +170*a(n-16) -24*a(n-17) -116*a(n-18) +40*a(n-19) +16*a(n-20) -4*a(n-21) -a(n-22) for n>25
Comments