cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A280227 Number of n X 2 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

0, 4, 6, 8, 14, 24, 42, 72, 124, 212, 362, 616, 1046, 1772, 2996, 5056, 8518, 14328, 24066, 40368, 67628, 113164, 189154, 315848, 526894, 878164, 1462372, 2433272, 4045694, 6721752, 11160282, 18517656, 30706396, 50888132, 84287066, 139531816
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2016

Keywords

Examples

			All solutions for n=4:
..0..0. .0..1. .0..0. .0..0. .0..0. .0..0. .0..1. .0..0
..0..1. .1..1. .0..0. .0..0. .0..0. .1..0. .0..0. .0..0
..0..0. .1..1. .0..1. .1..0. .0..0. .0..0. .0..0. .0..0
..0..0. .1..1. .0..0. .0..0. .1..0. .0..0. .0..0. .0..1
		

Crossrefs

Column 2 of A280233.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>7.
Empirical g.f.: x^2*(1 - x)*(1 + x)*(2 - x - 2*x^2 - x^3) / (1 - x - x^2)^2. - Colin Barker, Feb 13 2019

A280228 Number of n X 3 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 6, 9, 16, 29, 52, 95, 168, 298, 522, 911, 1580, 2729, 4694, 8046, 13748, 23425, 39812, 67507, 114228, 192914, 325230, 547411, 919996, 1544029, 2588002, 4332630, 7245208, 12103013, 20197972, 33675911, 56098560, 93374074, 155296914
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2016

Keywords

Examples

			Some solutions for n=4:
..0..1..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..1..1
..0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .0..0..0. .1..1..1
..0..0..0. .1..1..0. .0..1..0. .0..0..0. .0..0..0. .0..1..1. .1..1..1
..0..0..0. .1..1..1. .0..0..0. .1..0..0. .0..0..1. .1..1..1. .1..1..1
		

Crossrefs

Column 3 of A280233.

Formula

Empirical: a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - a(n-4) for n>7.
Empirical g.f.: x*(2 + 2*x - 5*x^2 - 4*x^3 + 2*x^4 + 2*x^5 + 3*x^6) / (1 - x - x^2)^2. - Colin Barker, Feb 13 2019

A280229 Number of nX4 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

2, 8, 16, 48, 116, 288, 678, 1600, 3766, 8704, 20040, 45904, 104540, 237268, 536526, 1209480, 2719500, 6099968, 13653798, 30504064, 68032030, 151493220, 336863254, 748075672, 1659257392, 3676182044, 8136355808, 17990500384, 39743338382
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2016

Keywords

Comments

Column 4 of A280233.

Examples

			Some solutions for n=4
..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..1..1
..1..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..1..1
..1..1..1..1. .0..1..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0
..1..1..1..1. .1..1..1..1. .1..1..1..1. .0..1..1..1. .0..0..0..0
		

Crossrefs

Cf. A280233.

Formula

Empirical: a(n) = 4*a(n-1) -10*a(n-3) -8*a(n-4) +14*a(n-5) +25*a(n-6) +6*a(n-7) -10*a(n-8) -30*a(n-9) -27*a(n-10) -10*a(n-11) +9*a(n-12) +10*a(n-13) +3*a(n-14) +4*a(n-15) -4*a(n-16) for n>19

A280230 Number of nX5 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

5, 14, 29, 116, 355, 1102, 3376, 9860, 29091, 84644, 244759, 704628, 2018512, 5761462, 16393387, 46508232, 131619423, 371638678, 1047214662, 2945399940, 8270156835, 23184841888, 64903418567, 181446963548, 506630797962
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2016

Keywords

Comments

Column 5 of A280233.

Examples

			Some solutions for n=4
..0..0..0..0..0. .0..1..0..0..0. .0..0..0..1..1. .0..0..1..1..1
..0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..1. .0..0..1..1..1
..1..1..0..0..0. .0..0..0..0..0. .1..1..1..1..1. .0..1..0..0..0
..1..1..0..0..0. .0..0..0..0..0. .1..1..1..1..1. .0..0..0..0..0
		

Crossrefs

Cf. A280233.

Formula

Empirical: a(n) = 4*a(n-1) +6*a(n-2) -28*a(n-3) -31*a(n-4) +78*a(n-5) +114*a(n-6) -90*a(n-7) -153*a(n-8) +66*a(n-9) -29*a(n-10) -246*a(n-11) +40*a(n-12) +278*a(n-13) -56*a(n-14) -114*a(n-15) +170*a(n-16) -24*a(n-17) -116*a(n-18) +40*a(n-19) +16*a(n-20) -4*a(n-21) -a(n-22) for n>25

A280231 Number of nX6 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

8, 24, 52, 288, 1102, 4260, 16282, 59648, 220330, 806580, 2928596, 10606308, 38210998, 137282336, 491839132, 1757295568, 6265155736, 22290508020, 79158223310, 280632840576, 993329469088, 3510893492340, 12392392661846
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2016

Keywords

Comments

Column 6 of A280233.

Examples

			Some solutions for n=4
..0..0..0..0..0..0. .0..0..0..0..0..1. .0..0..0..0..0..0. .0..0..1..0..0..0
..0..0..0..0..0..0. .0..0..0..0..1..1. .0..0..0..0..0..0. .0..0..0..0..0..0
..1..1..0..0..0..0. .0..0..0..0..1..1. .1..1..1..0..0..1. .0..0..0..0..0..0
..1..1..0..0..0..0. .0..0..0..0..1..1. .1..1..1..1..1..1. .0..0..0..0..0..0
		

Crossrefs

Cf. A280233.

A280232 Number of nX7 0..1 arrays with no element unequal to a strict majority of its king-move neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

15, 42, 95, 678, 3376, 16282, 80825, 377706, 1780344, 8321484, 38431266, 177322266, 812861536, 3712259660, 16906747879, 76738963064, 347459922194, 1569637145558, 7075367986446, 31833804360316, 142976818494750, 641124031114626
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2016

Keywords

Comments

Column 7 of A280233.

Examples

			Some solutions for n=4
..0..0..0..0..1..1..1. .0..0..0..1..1..1..1. .0..0..0..0..0..0..0
..0..0..0..0..1..1..1. .1..0..0..1..1..1..1. .0..0..0..0..0..1..1
..1..1..0..0..0..1..1. .0..0..0..0..1..1..1. .1..1..0..0..1..1..1
..1..1..1..0..0..1..1. .0..0..0..0..1..1..1. .1..1..1..1..1..1..1
		

Crossrefs

Cf. A280233.
Showing 1-6 of 6 results.