cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280244 Lexicographically ordered list of sequences that meet the criteria for R. L. Graham's sequence: k = a_1 < a_2 < ... < a_t = A006255(k) and a_1*a_2*...*a_t is a square.

This page as a plain text file.
%I A280244 #20 Oct 28 2021 07:11:00
%S A280244 1,2,3,4,6,2,3,6,3,4,6,8,3,6,8,4,5,8,9,10,5,8,10,6,8,9,12,6,8,12,7,8,
%T A280244 9,14,7,8,14,8,9,10,12,15,8,10,12,15,9,10,12,15,16,18,10,12,15,18,11,
%U A280244 12,14,16,21,22,11,12,14,21,22,11,12,15,16,18,20,22
%N A280244 Lexicographically ordered list of sequences that meet the criteria for R. L. Graham's sequence: k = a_1 < a_2 < ... < a_t = A006255(k) and a_1*a_2*...*a_t is a square.
%C A280244 A259527(n) rows begin with n.
%H A280244 Peter Kagey, <a href="/A280244/b280244.txt">Table of n, a(n) for n = 1..10000</a>
%e A280244 [8,9,10,12,15] appears as a row in the table because A006255(8) = 15 and the product of the row is a square: 8*9*10*12*15 = 360^2.
%e A280244 Table begins:
%e A280244   1;
%e A280244   2,  3,  4,  6;
%e A280244   2,  3,  6;
%e A280244   3,  4,  6,  8;
%e A280244   3,  6,  8;
%e A280244   4;
%e A280244   5,  8,  9, 10;
%e A280244   5,  8, 10;
%e A280244   6,  8,  9, 12;
%e A280244   6,  8, 12;
%e A280244   7,  8,  9, 14;
%e A280244   7,  8, 14;
%e A280244   8,  9, 10, 12, 15;
%e A280244   8, 10, 12, 15;
%e A280244   ...
%t A280244 MapIndexed[With[{b = #1, a = First@ #2}, Reverse@ Select[Rest@ Subsets@ Range[a, b], And[SubsetQ[#, {a, b}], IntegerQ@ Sqrt[Times @@ #]] &]] &, #] &@ Table[k = 0; Which[IntegerQ@ Sqrt@ n, k, And[PrimeQ@ n, n > 3], k = n, True, While[Length@ Select[n Map[Times @@ # &, n + Rest@ Subsets@ Range@ k], IntegerQ@ Sqrt@# &] == 0, k++]]; k + n, {n, 16}] // Flatten (* _Michael De Vlieger_, Dec 30 2016 *)
%Y A280244 Cf. A006255, A245499, A259527.
%K A280244 nonn,tabf,look
%O A280244 1,2
%A A280244 _Peter Kagey_, Dec 29 2016