cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280254 Expansion of 1/(1 - Sum_{k>=1} x^p(k)), where p(k) is the number of partitions of k (A000041).

This page as a plain text file.
%I A280254 #5 Feb 16 2025 08:33:38
%S A280254 1,1,2,4,7,14,26,50,95,180,343,652,1240,2358,4484,8528,16217,30840,
%T A280254 58649,111532,212101,403352,767056,1458711,2774031,5275379,10032192,
%U A280254 19078230,36281088,68995780,131209344,249520934,474514204,902384123,1716064761,3263442024,6206090863,11802129022,22444120219
%N A280254 Expansion of 1/(1 - Sum_{k>=1} x^p(k)), where p(k) is the number of partitions of k (A000041).
%C A280254 Number of compositions (ordered partitions) into partition numbers.
%H A280254 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PartitionFunctionP.html">Partition Function P</a>
%H A280254 <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F A280254 G.f.: 1/(1 - Sum_{k>=1} x^p(k)).
%e A280254 a(4) = 7 because we have [3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2] and [1, 1, 1, 1].
%t A280254 nmax = 38; CoefficientList[Series[1/(1 - Sum[x^PartitionsP[k], {k, 1, nmax}]), {x, 0, nmax}], x]
%Y A280254 Cf. A000041, A007279.
%K A280254 nonn
%O A280254 0,3
%A A280254 _Ilya Gutkovskiy_, Dec 30 2016