cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280263 G.f.: Product_{k>=1} (1+x^(k^3)) / (1-x^(k^3)).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 4, 6, 6, 6, 6, 6, 6, 6, 8, 10, 10, 10, 10, 10, 10, 10, 12, 14, 14, 16, 18, 18, 18, 18, 20, 22, 22, 26, 30, 30, 30, 30, 32, 34, 34, 38, 42, 42, 42, 42, 44, 46, 46, 50, 54, 54, 56, 58, 60, 62, 62, 66, 70, 70, 74, 78, 82, 86, 86, 90, 94
Offset: 0

Views

Author

Vaclav Kotesovec, Dec 30 2016

Keywords

Comments

Convolution of A003108 and A279329.
In general, if m > 0 and g.f. = Product_{k>=1} (1 + x^(k^m)) / (1 - x^(k^m)), then a(n) ~ exp((m+1) * ((2^(1 + 1/m) - 1) * Gamma(1/m) * Zeta(1 + 1/m) / m^2)^(m/(m+1)) * (n/2)^(1/(m+1))) * ((2^(1 + 1/m) - 1) * Gamma(1/m) * Zeta(1 + 1/m))^(m/(m+1)) / (sqrt(m+1) * 2^(m/2 + (m+2)/(m+1)) * m^((3*m-1)/(2*(m+1))) * Pi^((m+1)/2) * n^((3*m+1)/(2*(m+1)))).

Crossrefs

Programs

  • Mathematica
    nmax=150; CoefficientList[Series[Product[(1+x^(k^3))/(1-x^(k^3)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2^(7/4) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * ((2^(4/3)-1) * Gamma(1/3) * Zeta(4/3))^(3/4) / (3 * 2^(15/4) * Pi^2 * n^(5/4)).