cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280271 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^prime(k)).

This page as a plain text file.
%I A280271 #5 Feb 16 2025 08:33:38
%S A280271 1,1,2,3,3,5,5,7,8,9,11,12,14,16,18,20,23,25,29,32,36,40,44,49,54,59,
%T A280271 65,70,76,83,89,98,105,114,123,132,143,154,165,178,190,204,219,234,
%U A280271 251,267,285,304,324,345,368,390,415,441,468,498,527,559,591,626,663,702,742,784,828,873,923,973,1026,1081,1138
%N A280271 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^prime(k)).
%C A280271 Partial sums of A000586.
%H A280271 Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, end of section 16.4.2 "Partitions into distinct parts", pp.348ff
%H A280271 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimePartition.html">Prime Partition</a>
%H A280271 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>
%F A280271 G.f.: (1/(1 - x))*Product_{k>=1} (1 + x^prime(k)).
%t A280271 nmax = 70; CoefficientList[Series[(1/(1 - x)) Product[(1 + x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A280271 Cf. A000070, A000586, A034891, A036469.
%K A280271 nonn
%O A280271 0,3
%A A280271 _Ilya Gutkovskiy_, Dec 30 2016