This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280273 #17 Jan 03 2017 03:03:02 %S A280273 3,5,23,41,59,113,131,173,179,269,281,383,401,431,443,449,461,479,521, %T A280273 641,653,863,929,941,953,1013,1103,1163,1301,1319,1361,1439,1481,1559, %U A280273 1583,1871,2003,2213,2309,2411,2609,2693,2711,2729,2801,2903,2909,2969,3041 %N A280273 Primes p such that 8p^2 - 7p + 2 is also prime. %C A280273 For any p in this sequence, 2*p*(8p^2 - 7p + 2) has the same nonzero digits as its prime factors in base 2*p-1. %C A280273 Apart from 3 itself, all members of this sequence are congruent to 2 (mod 3). This is because for any number congruent to 1 (mod 3), the expression (8n^2 - 7n + 2) would be a multiple of 3 and hence not prime. %H A280273 Ely Golden, <a href="/A280273/b280273.txt">Table of n, a(n) for n = 1..1000</a> %t A280273 Select[Prime@ Range@ 450, PrimeQ[8 #^2 - 7 # + 2] &] (* _Michael De Vlieger_, Dec 30 2016 *) %o A280273 (SageMath) %o A280273 c=1 %o A280273 index=1 %o A280273 while(index<=1000): %o A280273 if((is_prime(c))&(is_prime(8*(c**2)-7*c+2))): %o A280273 print(str(index)+" "+str(c)) %o A280273 index+=1 %o A280273 c+=1 %o A280273 print("complete") %K A280273 nonn %O A280273 1,1 %A A280273 _Ely Golden_, Dec 30 2016