cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280277 G.f.: Product_{k>=1} (1 + x^k) / (1 - x^(k^3)).

This page as a plain text file.
%I A280277 #8 Jan 28 2024 09:00:28
%S A280277 1,2,3,5,7,10,14,19,26,35,46,60,77,98,124,156,195,242,299,367,448,545,
%T A280277 660,796,957,1146,1368,1629,1933,2287,2700,3178,3732,4373,5112,5964,
%U A280277 6944,8068,9357,10832,12517,14440,16632,19126,21960,25178,28825,32954,37625
%N A280277 G.f.: Product_{k>=1} (1 + x^k) / (1 - x^(k^3)).
%C A280277 Convolution of A000009 and A003108.
%H A280277 Vaclav Kotesovec, <a href="/A280277/b280277.txt">Table of n, a(n) for n = 0..10000</a>
%H A280277 Vaclav Kotesovec, <a href="/A280277/a280277.jpg">Graph - The asymptotic ratio (100000 terms)</a>
%F A280277 a(n) ~ exp(Pi*sqrt(n/3) + 2^(1/3) * Gamma(1/3) * Zeta(4/3) * n^(1/6) / (3^(5/6) * Pi^(1/3))) / (16*sqrt(3)*Pi*n).
%t A280277 nmax=80; CoefficientList[Series[Product[(1+x^k)/(1-x^(k^3)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A280277 Cf. A000009, A003108, A102108, A280264, A280276, A369571, A369573.
%K A280277 nonn
%O A280277 0,2
%A A280277 _Vaclav Kotesovec_, Dec 30 2016