cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280278 G.f.: Product_{k>=1} (1 + x^(k^3)) / (1 - x^k).

This page as a plain text file.
%I A280278 #7 Jan 28 2024 09:27:06
%S A280278 1,2,3,5,8,12,18,26,38,54,75,103,141,190,254,337,444,580,754,973,1250,
%T A280278 1597,2030,2568,3237,4061,5076,6322,7847,9705,11968,14711,18033,22043,
%U A280278 26873,32677,39642,47972,57924,69787,83904,100667,120547,144072,171876,204677
%N A280278 G.f.: Product_{k>=1} (1 + x^(k^3)) / (1 - x^k).
%C A280278 Convolution of A279329 and A000041.
%H A280278 Vaclav Kotesovec, <a href="/A280278/b280278.txt">Table of n, a(n) for n = 0..10000</a>
%F A280278 a(n) ~ exp(Pi*sqrt(2*n/3) + (2^(1/3) - 1) * Gamma(1/3) * Zeta(4/3) * n^(1/6) / (2^(1/6) * 3^(5/6) * Pi^(1/3))) / (4*sqrt(6)*n).
%t A280278 nmax=60; CoefficientList[Series[Product[(1+x^(k^3))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A280278 Cf. A000041, A264393, A279329, A280204, A369571, A369579.
%K A280278 nonn
%O A280278 0,2
%A A280278 _Vaclav Kotesovec_, Dec 30 2016