This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280287 #7 Feb 16 2025 08:33:38 %S A280287 1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,1,0,1,0,0,1,0,0,1, %T A280287 1,1,2,0,0,1,1,0,2,0,1,2,1,0,3,2,1,2,1,0,3,2,1,3,2,1,5,2,1,4,3,2,4,2, %U A280287 1,6,4,2,6,4,3,7,4,3,6,5,4,9,5,4,10,8,4,10,6,6,12,9,5,13,9,8,14,11,7,17,13,9,16,12,11,21 %N A280287 Number of partitions of n into distinct odd composite numbers (A071904). %H A280287 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CompositeNumber.html">Composite Number</a> %H A280287 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A280287 G.f.: ((1 + x^2)/(1 + x))*Product_{k>=1} (1 + x^k)/((1 + x^(2*k))*(1 + x^prime(k))). %e A280287 a(48) = 3 because we have [39, 9], [33, 15] and [27, 21]. %t A280287 nmax = 105; CoefficientList[Series[(1 + x^2)/(1 + x) Product[(1 + x^k)/((1 + x^(2 k)) (1 + x^Prime[k])), {k, 1, nmax}], {x, 0, nmax}], x] %Y A280287 Cf. A002095, A002808, A096258, A023895, A071904, A204389, A280285. %K A280287 nonn %O A280287 0,37 %A A280287 _Ilya Gutkovskiy_, Dec 31 2016