cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280318 a(n) is the n-th permutation generated by Heap's algorithm, represented by row number of A055089.

This page as a plain text file.
%I A280318 #22 Jan 01 2017 02:04:27
%S A280318 0,1,3,2,4,5,11,10,8,9,7,6,12,13,15,14,16,17,23,22,20,21,19,18,93,92,
%T A280318 94,95,90,91,78,79,81,80,82,83,89,88,86,87,85,84,74,75,73,72,77,76,52,
%U A280318 53,48,49,51,50,71,70,68,69,67,66,55,54,59,58
%N A280318 a(n) is the n-th permutation generated by Heap's algorithm, represented by row number of A055089.
%C A280318 This is a permutation of the nonnegative integers. It divides naturally in sections of factorial length, so it can be seen as a triangle with row lengths A094258:
%C A280318 0,
%C A280318 1,
%C A280318 3, 2, 4, 5,
%C A280318 11, 10, 8, 9, 7, 6, 12, 13, 15, 14, 16, 17, 23, 22, 20, 21, 19, 18...
%C A280318 Compare A280319 for Steinhaus-Johnson-Trotter algorithm, which is a triangle of finite permutations rather than one infinite permutation.
%H A280318 Tilman Piesk, <a href="/A280318/b280318.txt">Table of n, a(n) for n = 0..5039</a>
%H A280318 Tilman Piesk, <a href="http://pastebin.com/ERqb4EaX">Calculation in Python</a>
%H A280318 Wikipedia, <a href="https://en.wikipedia.org/wiki/Heap&#39;s_algorithm">Heap's algorithm</a>
%e A280318 Example for the first 24 entries of the sequence. On the right are the permutations of {1,2,3,4} in the order generated by the Heap's algorithm:
%e A280318    n    rev colex        a(n)   Heap's
%e A280318    0     1 2 3 4          0     1 2 3 4
%e A280318    1     2 1 3 4          1     2 1 3 4
%e A280318    2     1 3 2 4          3     3 1 2 4
%e A280318    3     3 1 2 4          2     1 3 2 4
%e A280318    4     2 3 1 4          4     2 3 1 4
%e A280318    5     3 2 1 4          5     3 2 1 4
%e A280318    6     1 2 4 3         11     4 2 1 3
%e A280318    7     2 1 4 3         10     2 4 1 3
%e A280318    8     1 4 2 3          8     1 4 2 3
%e A280318    9     4 1 2 3          9     4 1 2 3
%e A280318   10     2 4 1 3          7     2 1 4 3
%e A280318   11     4 2 1 3          6     1 2 4 3
%e A280318   12     1 3 4 2         12     1 3 4 2
%e A280318   13     3 1 4 2         13     3 1 4 2
%e A280318   14     1 4 3 2         15     4 1 3 2
%e A280318   15     4 1 3 2         14     1 4 3 2
%e A280318   16     3 4 1 2         16     3 4 1 2
%e A280318   17     4 3 1 2         17     4 3 1 2
%e A280318   18     2 3 4 1         23     4 3 2 1
%e A280318   19     3 2 4 1         22     3 4 2 1
%e A280318   20     2 4 3 1         20     2 4 3 1
%e A280318   21     4 2 3 1         21     4 2 3 1
%e A280318   22     3 4 2 1         19     3 2 4 1
%e A280318   23     4 3 2 1         18     2 3 4 1
%Y A280318 Cf. A055089, A094258, A280319.
%K A280318 nonn,tabf
%O A280318 0,3
%A A280318 _Tilman Piesk_, Dec 31 2016