cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280319 Irregular triangle read by rows: T(m, n) is the n-th permutation of m things generated by the Steinhaus-Johnson-Trotter algorithm, represented by row number of A055089.

This page as a plain text file.
%I A280319 #28 Feb 12 2024 08:40:14
%S A280319 0,0,1,0,2,3,5,4,1,0,6,8,9,15,14,12,2,3,13,16,17,23,22,19,5,4,18,20,
%T A280319 21,11,10,7,1,0,24,30,32,33,57,56,54,48,6,8,50,60,62,63,65,64,61,51,9,
%U A280319 15,75,85,88,89,87,86,84,74,14,12,72,78,80,81
%N A280319 Irregular triangle read by rows: T(m, n) is the n-th permutation of m things generated by the Steinhaus-Johnson-Trotter algorithm, represented by row number of A055089.
%C A280319 Row m is a permutation of the integers 0..m!-1, so this is a triangle in which row m>=1 has length A000142(m).
%C A280319 Compare A280318 for Heap's algorithm, which is one infinite permutation rather than a triangle of finite permutations.
%H A280319 Tilman Piesk, <a href="/A280319/b280319.txt">Triangle rows m=1..7, flattened</a>
%H A280319 Tilman Piesk, <a href="http://pastebin.com/ZfdQJ5fA">Calculation with Python</a>
%H A280319 Wikipedia, <a href="https://en.wikipedia.org/wiki/Steinhaus%E2%80%93Johnson%E2%80%93Trotter_algorithm">Steinhaus-Johnson-Trotter algorithm</a>
%e A280319 Triangle begins:
%e A280319   m/n   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
%e A280319   1     0
%e A280319   2     0  1
%e A280319   3     0  2  3  5  4  1
%e A280319   4     0  6  8  9 15 14 12  2  3 13 16 17 23 22 19  5  4 18 20 21 11 10  7  1
%e A280319 Example for row m=4. On the right are the permutations of {1,2,3,4} in the order generated by the Steinhaus-Johnson-Trotter algorithm (A207324):
%e A280319    n    rev colex      T(4,n)     SJT
%e A280319    0     1 2 3 4          0     1 2 3 4
%e A280319    1     2 1 3 4          6     1 2 4 3
%e A280319    2     1 3 2 4          8     1 4 2 3
%e A280319    3     3 1 2 4          9     4 1 2 3
%e A280319    4     2 3 1 4         15     4 1 3 2
%e A280319    5     3 2 1 4         14     1 4 3 2
%e A280319    6     1 2 4 3         12     1 3 4 2
%e A280319    7     2 1 4 3          2     1 3 2 4
%e A280319    8     1 4 2 3          3     3 1 2 4
%e A280319    9     4 1 2 3         13     3 1 4 2
%e A280319   10     2 4 1 3         16     3 4 1 2
%e A280319   11     4 2 1 3         17     4 3 1 2
%e A280319   12     1 3 4 2         23     4 3 2 1
%e A280319   13     3 1 4 2         22     3 4 2 1
%e A280319   14     1 4 3 2         19     3 2 4 1
%e A280319   15     4 1 3 2          5     3 2 1 4
%e A280319   16     3 4 1 2          4     2 3 1 4
%e A280319   17     4 3 1 2         18     2 3 4 1
%e A280319   18     2 3 4 1         20     2 4 3 1
%e A280319   19     3 2 4 1         21     4 2 3 1
%e A280319   20     2 4 3 1         11     4 2 1 3
%e A280319   21     4 2 3 1         10     2 4 1 3
%e A280319   22     3 4 2 1          7     2 1 4 3
%e A280319   23     4 3 2 1          1     2 1 3 4
%Y A280319 Cf. A000142, A055089, A207324, A280318.
%K A280319 nonn,tabf
%O A280319 0,5
%A A280319 _Tilman Piesk_, Dec 31 2016