This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280321 #27 Jul 04 2023 12:35:22 %S A280321 1,12,25,49,81,121,169,225,289,361,441,529,625,729,841,961,1089,1225, %T A280321 1369,1521,1681,1849,2025,2209,2401,2601,2809,3025,3249,3481,3721, %U A280321 3969,4225,4489,4761,5041,5329,5625,5929,6241,6561,6889,7225,7569,7921,8281,8649,9025,9409,9801,10201 %N A280321 Number of 2 X 2 matrices with all elements in {0,..,n} having determinant = n*permanent. %C A280321 Same as A016754, except for n=1. Here a(1)=12 but A016754(1)=9. %H A280321 Indranil Ghosh, <a href="/A280321/b280321.txt">Table of n, a(n) for n = 0..990</a> %F A280321 a(n+1) = (((n-2)*a(n))/(n-1)) + ((12*(n)^2-12*(n)+1)/(n-1)) for n>=1. %F A280321 Conjectures from _Colin Barker_, Jan 01 2017: (Start) %F A280321 a(n) = (1 + 2*n)^2 = A273789(n) = A273743(n) for n>1. %F A280321 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>4. %F A280321 G.f.: (1 + 9*x - 8*x^2 + 9*x^3 - 3*x^4) / (1 - x)^3. %F A280321 (End) %o A280321 (Python) %o A280321 def t(n): %o A280321 s=0 %o A280321 for a in range(n+1): %o A280321 for b in range(n+1): %o A280321 for c in range(n+1): %o A280321 for d in range(n+1): %o A280321 if (a*d-b*c)==n*(a*d+b*c): %o A280321 s+=1 %o A280321 return s %o A280321 for i in range(41): %o A280321 print(str(i)+" "+str(t(i))) %Y A280321 Cf. A016754. %K A280321 nonn %O A280321 0,2 %A A280321 _Indranil Ghosh_, Jan 01 2017