cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280343 Number of 2 X 2 matrices with all elements in {-n,..,0,..,n} with determinant = 2*permanent.

Original entry on oeis.org

1, 25, 81, 233, 401, 585, 1009, 1289, 1681, 2377, 2913, 3353, 4497, 5033, 5793, 7097, 8065, 8761, 10721, 11513, 12961, 14873, 16113, 17065, 19873, 21225, 22689, 25465, 27585, 28793, 32561, 33865, 36113, 39177, 41121, 43481, 48801, 50361, 52529, 56201, 59793
Offset: 0

Views

Author

Indranil Ghosh, Jan 01 2017

Keywords

Crossrefs

Cf. A016754 (number of 2 X 2 matrices with all elements in {0,..,n} with determinant = 2*permanent).

Programs

  • Python
    def t(n):
        s=0
        for a in range(-n,n+1):
            for b in range(-n,n+1):
                for c in range(-n,n+1):
                    for d in range(-n,n+1):
                        if (a*d-b*c)==2*(a*d+b*c):
                            s+=1
        return s
    for i in range(0,146):
        print(str(i)+" "+str(t(i)))
    
  • Python
    def a280343_gen(lim):
        yield 1
        N = lim*lim
        M = (N+2)//3
        a = np.zeros(N, dtype=np.int64) # Counts solutions to x*y=k with x,y in 1..n
        for n in range(1, lim):
            a[n:n*n:n] += 2
            a[n*n] += 1
        yield (4*n+1)**2 + 8*int(a[3::3] @ a[1:M]) # David Radcliffe, Jun 14 2025

Formula

a(n) = (4*n+1)^2 + 8 * Sum_{k>0} d(k,n)*d(3*k,n) where d(k,n) is the number of integer solutions to x*y = k with 1 <= x,y <= n. - David Radcliffe, Jun 14 2025