This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280344 #45 Aug 08 2025 20:23:12 %S A280344 0,12,30,56,90,132,182,240,306,380,462,552,650,756,870,992,1122,1260, %T A280344 1406,1560,1722,1892,2070,2256,2450,2652,2862,3080,3306,3540,3782, %U A280344 4032,4290,4556,4830,5112,5402,5700,6006,6320,6642,6972,7310,7656,8010,8372,8742,9120,9506,9900,10302 %N A280344 Number of 2 X 2 matrices with all elements in {0,...,n} with determinant = permanent^n. %C A280344 For n>0, a(n) is the perimeter of a primitive Pythagorean triangle. - _Torlach Rush_, Jul 11 2019 %H A280344 Indranil Ghosh, <a href="/A280344/b280344.txt">Table of n, a(n) for n = 0..995</a> %F A280344 a(0) = A002939(0) = 0; a(n) = A002939(n+1), for n>=1. %F A280344 a(n) = (((n-2)*a(n-1))/(n-4)) - (6*(3*(n-1)+1)/(n-4)) for n>=4. %F A280344 Conjectures from _Colin Barker_, Jan 01 2017: (Start) %F A280344 a(n) = 2 + 6*n + 4*n^2 for n>0. %F A280344 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. %F A280344 G.f.: 2*x*(6 - 3*x + x^2) / (1 - x)^3. %F A280344 (End) %F A280344 From _Torlach Rush_, Jul 11 2019: (Start) %F A280344 a(n) = (2*n+1)*(2*n+2), n>0. %F A280344 a(n) = 2*((n+1)^2 + ((n+1)*n)), n>0. %F A280344 (End) %t A280344 Table[Boole[n != 0] 2 # (2 # - 1) &[n + 1], {n, 0, 50}] (* or *) %t A280344 CoefficientList[Series[2 x (6 - 3 x + x^2)/(1 - x)^3, {x, 0, 50}], x] (* _Michael De Vlieger_, Jan 01 2017 *) %o A280344 (Python) %o A280344 def t(n): %o A280344 s=0 %o A280344 for a in range(0,n+1): %o A280344 for b in range(0,n+1): %o A280344 for c in range(0,n+1): %o A280344 for d in range(0,n+1): %o A280344 if (a*d-b*c)==(a*d+b*c)**n: %o A280344 s+=1 %o A280344 return s %o A280344 for i in range(0,41): %o A280344 print(i, t(i)) %Y A280344 Same as both A002939 and A118239 without A002939(1) = 2. %Y A280344 Cf. A016754, A280343. %K A280344 nonn %O A280344 0,2 %A A280344 _Indranil Ghosh_, Jan 01 2017