cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280345 a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [1, -2].

This page as a plain text file.
%I A280345 #25 May 08 2017 18:43:51
%S A280345 3,7,12,25,48,97,192,385,768,1537,3072,6145,12288,24577,49152,98305,
%T A280345 196608,393217,786432,1572865,3145728,6291457,12582912,25165825,
%U A280345 50331648,100663297,201326592,402653185,805306368,1610612737,3221225472,6442450945,12884901888
%N A280345 a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [1, -2].
%C A280345 a(n) mod 9 is a periodic sequence of length 2: repeat [3, 7].
%C A280345 From 7, the last digit is of period 4: repeat [7, 2, 5, 8].
%C A280345 (Main sequence for the signature (2,1,-2): 0, 0, 1, 2, 5, 10, 21, 42, ... = 0 followed by A000975(n) = b(n), which first differences are A001045(n) (Paul Barry, Oct 08 2005). Then, 0 followed by b(n) is an autosequence of the first kind. The corresponding autosequence of the second kind is 0, 0, 2, 3, 8, 15, 32, 63, ... . See A277078(n).)
%C A280345 Difference table of a(n):
%C A280345 3,   7, 12, 25, 48,  97, 192, ...
%C A280345 4,   5, 13, 23, 49,  95, 193, ...  = -(-1)^n* A140683(n)
%C A280345 1,   8, 10, 26, 46,  98, 190, ...  = A259713(n)
%C A280345 7,   2, 16, 20, 52,  92, 196, ...
%C A280345 -5, 14,  4, 32, 40, 104, 184, ...
%C A280345 ... .
%H A280345 Colin Barker, <a href="/A280345/b280345.txt">Table of n, a(n) for n = 0..1000</a>
%H A280345 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2).
%F A280345 a(2n) = 3*4^n, a(2n+1) = 6*4^n + 1.
%F A280345 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n>2.
%F A280345 a(n+2) = a(n) + 9*2^n.
%F A280345 a(n) = 2^(n+2) - A051049(n).
%F A280345 From _Colin Barker_, Jan 01 2017: (Start)
%F A280345 a(n) = 3*2^n for n even.
%F A280345 a(n) = 3*2^n + 1 for n odd.
%F A280345 G.f.: (3 + x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).
%F A280345 (End)
%F A280345 Binomial transform of 3, followed by (-1)^n* A140657(n).
%e A280345 a(0) = 3, a(1) = 2*3 + 1 = 7, a(2) = 2*7 - 2 = 12, a(3) = 2*12 + 1 = 25.
%t A280345 a[0] = 3; a[n_] := a[n] = 2 a[n - 1] + 1 + (-3) Boole[EvenQ@ n]; Table[a@ n, {n, 0, 32}] (* or *)
%t A280345 CoefficientList[Series[(3 + x - 5 x^2)/((1 - x) (1 + x) (1 - 2 x)), {x, 0, 32}], x] (* _Michael De Vlieger_, Jan 01 2017 *)
%o A280345 (PARI) Vec((3 + x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ _Colin Barker_, Jan 01 2017
%Y A280345 Cf. A005010, A051049, A140657, A140683, A164346, A199116, A259713.
%K A280345 nonn,easy
%O A280345 0,1
%A A280345 _Paul Curtz_, Jan 01 2017
%E A280345 More terms from _Colin Barker_, Jan 01 2017