This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280351 #41 Jan 22 2024 15:22:41 %S A280351 1,1,1,1,1,1,1,1,2,9,37,121,331,793,1717,3433,6436,11441,19449,31825, %T A280351 50389,77521,116281,170545,245158,346105,480701,657802,888058,1184419, %U A280351 1564435,2063206,2799487,4272049,8544097,23535821,77331981,262534537,865287625,2720095405 %N A280351 Expansion of Sum_{k>=0} (x/(1 - x))^(k^3). %C A280351 Number of compositions of n into a cube number of parts. %H A280351 <a href="/index/Com#comp">Index entries for sequences related to compositions</a> %F A280351 a(0) = 1; a(n) = Sum_{k=1..floor(n^(1/3))} binomial(n-1, k^3-1) for n > 0. - _Jerzy R Borysowicz_, Dec 22 2022 %e A280351 a(9) = 9 because we have: %e A280351 [1] [9] %e A280351 [2] [2, 1, 1, 1, 1, 1, 1, 1] %e A280351 [3] [1, 2, 1, 1, 1, 1, 1, 1] %e A280351 [4] [1, 1, 2, 1, 1, 1, 1, 1] %e A280351 [5] [1, 1, 1, 2, 1, 1, 1, 1] %e A280351 [6] [1, 1, 1, 1, 2, 1, 1, 1] %e A280351 [7] [1, 1, 1, 1, 1, 2, 1, 1] %e A280351 [8] [1, 1, 1, 1, 1, 1, 2, 1] %e A280351 [9] [1, 1, 1, 1, 1, 1, 1, 2] %p A280351 a := n -> ifelse(n = 0, 1, add(binomial(n - 1, k^3 - 1), k = 1..floor(n^(1/3)))): %p A280351 seq(a(n), n = 0..39); # _Peter Luschny_, Dec 23 2022 %t A280351 nmax = 39; CoefficientList[Series[Sum[(x/(1 - x))^k^3, {k, 0, nmax}], {x, 0, nmax}], x] %Y A280351 Cf. A000578, A052467, A103198, A280352. %K A280351 nonn,easy %O A280351 0,9 %A A280351 _Ilya Gutkovskiy_, Jan 01 2017 %E A280351 a(0)=1 prepended by _Alois P. Heinz_, Dec 17 2022