cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280352 Expansion of Sum_{k>=1} (x/(1 - x))^(k*(k+1)/2).

This page as a plain text file.
%I A280352 #48 Sep 05 2025 07:48:37
%S A280352 1,1,2,4,7,12,22,43,85,164,308,573,1079,2081,4097,8129,16049,31315,
%T A280352 60402,115806,222416,430791,843987,1670054,3322167,6606936,13078586,
%U A280352 25714238,50230292,97708338,189921842,370216757,725680489,1431888173,2842060970,5662371069
%N A280352 Expansion of Sum_{k>=1} (x/(1 - x))^(k*(k+1)/2).
%C A280352 Number of compositions of n into a triangular number of parts.
%H A280352 Vaclav Kotesovec, <a href="/A280352/a280352.jpg">Plot of a(n) / (2^(n-1)/sqrt(n)) for n = 1..10000</a>
%H A280352 <a href="/index/Com#comp">Index entries for sequences related to compositions</a>
%F A280352 G.f.: Sum_{k>=1} (x/(1-x))^(k*(k+1)/2).
%F A280352 a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} binomial(n-1, k*(k+1)/2-1). - _Jerzy R Borysowicz_, Dec 26 2022
%F A280352 Conjecture: a(n+1)/a(n) ~ 2. - _Jerzy R Borysowicz_, Jan 14 2023
%F A280352 Conjecture: abs(b(n)-1) < 0.015, where b(n) = a(n)*sqrt(n)/2^(n-1), for n > 781; b(n) does not have a limit. - _Jerzy R Borysowicz_, Feb 17 2023
%e A280352 a(5) = 7 because we have:
%e A280352   [1]  [5]
%e A280352   [2]  [3, 1, 1]
%e A280352   [3]  [1, 3, 1]
%e A280352   [4]  [1, 1, 3]
%e A280352   [5]  [2, 2, 1]
%e A280352   [6]  [2, 1, 2]
%e A280352   [7]  [1, 2, 2]
%t A280352 nmax = 36; Rest[CoefficientList[Series[Sum[(x/(1 - x))^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]]
%t A280352 nmax = 40; Rest[CoefficientList[Series[-1 + EllipticTheta[2, 0, Sqrt[x/(1-x)]]/(2*(x/(1-x))^(1/8)), {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Jan 01 2017 *)
%o A280352 (PARI) a(n) = sum(k=1, (sqrtint(8*n+1)-1)\2, binomial(n-1, k*(k+1)/2-1)) \\ _Andrew Howroyd_, Jan 14 2023
%Y A280352 Cf. A000217, A052467, A103198, A280351.
%K A280352 nonn,easy,changed
%O A280352 1,3
%A A280352 _Ilya Gutkovskiy_, Jan 01 2017