This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280391 #22 May 22 2025 09:10:16 %S A280391 1,12,25,57,81,141,169,259,297,413,441,621,625,825,873,1079,1089,1403, %T A280391 1369,1739,1729,2021,2025,2507,2433,2859,2905,3301,3249,4029,3721, %U A280391 4509,4305,4793,4989,5551,5329,6027,6025,6807,6561,7917,7225,8357,8121,8677,8649,9843,9481,10889 %N A280391 Number of 2 X 2 matrices with all elements in {0,...,n} with permanent = determinant * n. %C A280391 All the values except a(1) are odd. %C A280391 From _Robert Israel_, Jan 02 2017: (Start) %C A280391 Number of solutions to (n+1)*x*y = (n-1)*z*w for x,y,z,w in [0..n]. %C A280391 a(n) >= (2n+1)^2, with equality if n+1 is an odd prime. (End) %H A280391 Robert Israel and Indranil Ghosh, <a href="/A280391/b280391.txt">Table of n, a(n) for n = 0..1600</a> (n = 0..200 from Indranil Ghosh) %p A280391 g:= proc(r,n) if r = 0 then 2*n+1 else nops(select(t -> t <= n and r <= t*n, numtheory:-divisors(r))) fi end proc: %p A280391 f:= proc(n) local c; %p A280391 if n::even then (2*n+1)^2 + add(g((n+1)*c,n)*g((n-1)*c,n), c=1..n-1) %p A280391 else (2*n+1)^2 + add(g((n+1)/2*c,n) * g((n-1)/2*c,n), c=1..2*n-1) %p A280391 fi %p A280391 end proc: %p A280391 map(f, [$0..100]); # _Robert Israel_, Jan 02 2017 %t A280391 g[r_, n_] := If[r == 0, 2n + 1, Length[Select[Divisors[r], # <= n && r <= # n&]]]; %t A280391 f[n_] := If[EvenQ[n], (2n + 1)^2 + Sum[g[(n + 1)c, n] g[(n - 1)c, n], {c, 1, n - 1}], (2n + 1)^2 + Sum[g[(n + 1)/2 c, n] g[(n - 1)/2 c, n], {c, 1, 2n - 1}]]; %t A280391 f /@ Range[0, 100] (* _Jean-François Alcover_, Jul 29 2020, after _Robert Israel_ *) %o A280391 (Python) %o A280391 def t(n): %o A280391 s=0 %o A280391 for a in range(0,n+1): %o A280391 for b in range(0,n+1): %o A280391 for c in range(0,n+1): %o A280391 for d in range(0,n+1): %o A280391 if (a*d-b*c)*n==(a*d+b*c): %o A280391 s+=1 %o A280391 return s %o A280391 for i in range(0,201): %o A280391 print(t(i)) %Y A280391 Cf. A280321 (Number of 2 X 2 matrices with all elements in {0,..,n} with permanent*n = determinant). %Y A280391 Cf. A015237 (Number of 2 X 2 matrices having all elements in {0..n} with determinant = permanent). %Y A280391 Cf. A016754 (Number of 2 X 2 matrices having all elements in {0..n} with determinant =2* permanent). %Y A280391 Cf. A280364 (Number of 2 X 2 matrices having all elements in {0..n} with determinant^n = permanent). %K A280391 nonn %O A280391 0,2 %A A280391 _Indranil Ghosh_, Jan 02 2017