This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280407 #63 May 28 2025 01:04:39 %S A280407 1,45,81,233,289,601,625,1113,1153,1785,1681,2761,2401,3577,3505,4665, %T A280407 4225,6185,5329,7673,6945,8601,7921,11033,9665,12265,11793,14089, %U A280407 12769,18073,14641,19945,17281,20121,20593,23961,21025,25417,24177,29177,25921,35449,28561,36233 %N A280407 Number of 2 X 2 matrices with all elements in {-n,..,0,..,n} with permanent = determinant * n. %H A280407 David Radcliffe, <a href="/A280407/b280407.txt">Table of n, a(n) for n = 0..10000</a> (terms n = 0..155 from Indranil Ghosh). %F A280407 From _David Radcliffe_, May 22 2025: (Start) %F A280407 a(n) = (4*n+1)^2 iff n=0 or n+1 is an odd prime, otherwise a(n) > (4*n+1)^2. %F A280407 a(n) = 8 * A280391(n) - 8*(2*n+1)^2 + (4*n+1)^2 for n>1. (End) %e A280407 For n = 2, few of the possible matrices are [-2,-2,0,0], [-2,-1,0,0], [-2,0,-2,0], [-2,0,-1,0], [-2,0,0,0], [-2,0,1,0], [-2,0,2,0], [1,0,0,0], [1,0,1,0], [1,0,2,0], [1,1,0,0], [1,2,0,0], [2,-2,0,0], [2,-1,0,0], [2,0,-2,0], .... There are 81 possibilities. Here each of the matrices is defined as M = [a,b,c,d] where a = M[1][1], b = M[1][2], c = M[2][1], d = M[2][2]. So for n = 2, a(2)=81. %o A280407 (Python) %o A280407 def t(n): %o A280407 s=0 %o A280407 for a in range(-n,n+1): %o A280407 for b in range(-n,n+1): %o A280407 for c in range(-n,n+1): %o A280407 for d in range(-n,n+1): %o A280407 if (a*d-b*c)*n==(a*d+b*c): %o A280407 s+=1 %o A280407 return s %o A280407 for i in range(0,156): %o A280407 print(t(i)) %o A280407 (Python) %o A280407 import numpy as np %o A280407 def a280417(N): %o A280407 if N > 0: yield 1 %o A280407 if N > 1: yield 45 %o A280407 if N <= 2: return %o A280407 prods = np.zeros(N * N, dtype=np.int32) %o A280407 prods[1] = 1 # prods[k] counts integer solutions to x*y = k with 1 <= x,y <= n %o A280407 for n in range(2, N): %o A280407 n_sq = n * n %o A280407 prods[n: n_sq: n] += 2 %o A280407 prods[n_sq] += 1 %o A280407 dx = (n + 1) // 2 if n % 2 else n + 1 %o A280407 dy = (n - 1) // 2 if n % 2 else n - 1 %o A280407 ad = prods[dx : n_sq : dx] %o A280407 bc = prods[dy : dy * ad.shape[0] + 1 : dy] %o A280407 yield (4 * n + 1) ** 2 + 8 * int(ad @ bc) %o A280407 # (4*n+1)**2 = solutions to a*d = b*c = 0 with -n <= a,b <= n. %o A280407 # ad @ bc = solutions to (n-1)*a*d = (n+1)*b*c > 0 with 1 <= a,b <= n. %o A280407 # Multiply by 8 to account for all consistent sign changes of a,b,c,d. %o A280407 print(list(a280417(44))) # _David Radcliffe_, May 22 2025 %Y A280407 Number of 2 X 2 matrices with all elements in {0,..,n}: A280391 (permanent = determinant * n), A280321 (determinant = permanent * n), A015237 (determinant = permanent) and A016754 (determinant = 2* permanent). %K A280407 nonn %O A280407 0,2 %A A280407 _Indranil Ghosh_, Jan 06 2017