This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280408 #28 Jun 07 2025 11:56:52 %S A280408 2,2,3,5,2,2,5,2,3,5,2,7,11,17,13,5,2,2,7,11,17,13,5,2,5,2,11,17,13,5, %T A280408 2,3,5,2,13,5,2,7,11,17,13,5,2,23,53,5,2,2,17,13,5,2,7,11,17,13,5,2, %U A280408 19,29,11,17,13,5,2,5,2,2,11,17,13,5,2,23,53,5,2,3,5,2,19,29,11,17,13,5,2 %N A280408 Irregular triangle read by rows listing the prime numbers that appear from the trajectory of n in Collatz Problem. %H A280408 David Radcliffe, <a href="/A280408/b280408.txt">Table of n, a(n) for n = 1..10000</a> %e A280408 The irregular array a(n,k) starts: %e A280408 n\k 1 2 3 4 5 6 %e A280408 ... %e A280408 1: 2 %e A280408 2: 2 %e A280408 3: 3 5 2 %e A280408 4: 2 %e A280408 5: 5 2 %e A280408 6: 3 5 2 %e A280408 7: 7 11 17 13 5 2 %e A280408 8: 2 %e A280408 9: 7 11 17 13 5 2 %e A280408 10: 5 2 %e A280408 11: 11 17 13 5 2 %e A280408 12: 3 5 2 %e A280408 13: 13 5 2 %e A280408 14: 7 11 17 13 5 2 %e A280408 15: 23 53 5 2 %t A280408 Table[Select[NestWhileList[If[EvenQ@ #, #/2, 3 # + 1] &, n, # > 1 &], PrimeQ], {n, 2, 30}] // Flatten (* _Michael De Vlieger_, Jan 02 2017 *) %o A280408 (Python) %o A280408 from sympy import isprime %o A280408 def a(n): %o A280408 if n==1: return [2] %o A280408 l=[n, ] %o A280408 while True: %o A280408 if n%2==0: n//=2 %o A280408 else: n = 3*n + 1 %o A280408 l+=[n, ] %o A280408 if n<2: break %o A280408 return list(filter(lambda i: isprime(i), l)) %o A280408 for n in range(1, 21): print(a(n)) # _Indranil Ghosh_, Apr 14 2017 %Y A280408 Cf. A070165, A280409. %K A280408 tabf,nonn %O A280408 1,1 %A A280408 _Matthew Campbell_, Jan 02 2017