cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280421 G.f.: Product_{k>=1} (1 + x^(k*(k+1)/2)) / (1 - x^k).

This page as a plain text file.
%I A280421 #7 Jan 02 2017 19:15:56
%S A280421 1,2,3,6,10,15,24,36,52,76,109,152,211,290,393,530,709,938,1236,1618,
%T A280421 2102,2720,3500,4477,5707,7242,9146,11511,14435,18030,22451,27868,
%U A280421 34476,42531,52324,64186,78541,95867,116721,141791,171862,207844,250846,302134
%N A280421 G.f.: Product_{k>=1} (1 + x^(k*(k+1)/2)) / (1 - x^k).
%C A280421 Convolution of A024940 and A000041.
%H A280421 Vaclav Kotesovec, <a href="/A280421/b280421.txt">Table of n, a(n) for n = 0..10000</a>
%F A280421 a(n) ~ exp(sqrt(2*n/3)*Pi + 3^(1/4) * (sqrt(2)-1) * Zeta(3/2) * n^(1/4) / 2^(3/4) + 3*(2*sqrt(2)-3) * Zeta(3/2)^2 / (32*Pi)) / (8*sqrt(3)*n).
%t A280421 nmax=60; CoefficientList[Series[Product[(1+x^(k*(k+1)/2))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A280421 Cf. A024940, A000041, A280204, A280423.
%K A280421 nonn
%O A280421 0,2
%A A280421 _Vaclav Kotesovec_, Jan 02 2017