This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280425 #9 Feb 25 2017 19:23:14 %S A280425 0,0,0,0,120,600,3720,27240,229080,2170680,22852200,264398280, %T A280425 3332744760,45440868120,666166856520,10446911529000,174478419885720, %U A280425 3091496076405240,57915148833808680,1143668772912038280,23742102690747895800,516882856872298424280,11775038596933279562760 %N A280425 Sixth column of Euler's difference table in A068106. %C A280425 For n >= 6, this is the number of permutations of [n] that avoid substrings j(j+5), 1 <= j <= n-5. %H A280425 Indranil Ghosh, <a href="/A280425/b280425.txt">Table of n, a(n) for n = 1..400</a> %H A280425 Enrique Navarrete, <a href="http://arxiv.org/abs/1610.06217">Generalized K-Shift Forbidden Substrings in Permutations</a>, arXiv:1610.06217 [math.CO], 2016. %F A280425 For n>=6: a(n) = Sum_{j=0..n-5} (-1)^j*binomial(n-5,j)*(n-j)!. %F A280425 Note a(n)/n! ~ 1/e. %e A280425 a(9) = 229080 since there are 229080 permutations in S9 that avoid substrings {16,27,38,49}. %t A280425 a[1]=a[2]=a[3]=a[4]=0; a[5]=120;a[6]=600;a[n_]:=Sum[(-1)^j*Binomial[n-5,j]*(n-j)!,{j,0,n-5}];Table[a[n],{n,1,23}] (* _Indranil Ghosh_, Feb 25 2017 *) %Y A280425 Also 120 times A001910. %Y A280425 Cf. A068106. %K A280425 nonn %O A280425 1,5 %A A280425 _Enrique Navarrete_, Jan 02 2017