A280436 Number of nX4 0..1 arrays with no element equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
2, 20, 42, 80, 138, 232, 386, 640, 1062, 1764, 2934, 4884, 8134, 13548, 22562, 37560, 62498, 103936, 172746, 286936, 476318, 790220, 1310222, 2171180, 3595918, 5952452, 9848346, 16286240, 26920122, 44477464, 73454354, 121259824, 200099094
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..1..0. .0..1..0..1. .0..1..1..0. .0..0..1..0. .0..1..0..1 ..1..0..0..1. .1..0..0..0. .1..0..0..1. .1..0..1..0. .1..0..1..0 ..0..1..1..0. .0..1..0..1. .0..1..1..0. .0..1..0..1. .0..1..0..1 ..1..0..1..0. .1..0..1..0. .0..1..0..1. .1..0..1..0. .1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A280440.
Formula
Empirical: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>7.
Empirical g.f.: 2*x + 2*x^2*(10-19*x-4*x^2+13*x^3+x^5+2*x^4) / ( (x-1)^2*(x^2+x-1)^2 ). - R. J. Mathar, Jan 04 2017
Comments