cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280438 Number of n X 6 0..1 arrays with no element equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

Original entry on oeis.org

10, 68, 136, 232, 360, 548, 834, 1284, 2008, 3188, 5128, 8332, 13638, 22436, 37032, 61248, 101416, 168020, 278410, 461284, 764088, 1265228, 2094216, 3464892, 5730190, 9472388, 15651784, 25851544, 42680808, 70438148, 116203218, 191632452
Offset: 1

Views

Author

R. H. Hardin, Jan 03 2017

Keywords

Examples

			Some solutions for n=4:
..0..1..0..1..0..1. .0..1..0..0..1..1. .0..0..1..1..0..0. .0..0..1..0..1..0
..0..0..1..0..1..0. .1..0..1..1..0..1. .0..1..0..0..1..1. .1..1..0..1..0..1
..0..1..0..1..0..1. .0..1..0..0..1..0. .1..0..1..1..0..0. .0..0..1..0..1..0
..1..0..1..0..1..0. .1..0..1..1..0..1. .0..1..0..0..1..1. .1..1..0..1..1..1
		

Crossrefs

Column 6 of A280440.

Formula

Empirical: a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 4*a(n-4) - a(n-6) for n>7.
Empirical g.f.: 2*x*(5 + 14*x - 48*x^2 - 10*x^3 + 36*x^4 + 18*x^5 + 6*x^6) / ((1 - x)^2*(1 - x - x^2)^2). - Colin Barker, Feb 13 2019