A280440 T(n,k)=Number of nXk 0..1 arrays with no element equal to more than one of its horizontal and vertical neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 1, 4, 1, 2, 10, 10, 2, 5, 20, 21, 20, 5, 10, 38, 42, 42, 38, 10, 20, 68, 77, 80, 77, 68, 20, 38, 120, 136, 138, 138, 136, 120, 38, 71, 208, 236, 232, 225, 232, 236, 208, 71, 130, 358, 404, 386, 360, 360, 386, 404, 358, 130, 235, 612, 687, 640, 574, 548, 574, 640, 687
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..1..0..1 ..0..1..0..1. .1..0..1..1. .1..0..1..0. .1..0..1..0. .0..0..1..0 ..1..0..1..0. .0..1..0..0. .1..1..0..1. .0..1..0..1. .1..1..0..1 ..1..0..1..0. .1..0..1..1. .1..0..1..0. .0..1..0..1. .0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..568
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4)
k=2: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5)
k=3: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) +a(n-5) for n>6
k=4: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>7
k=5: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>7
k=6: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>7
k=7: a(n) = 4*a(n-1) -4*a(n-2) -2*a(n-3) +4*a(n-4) -a(n-6) for n>7
Comments