cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280448 Sum of the GCDs of the smaller and larger parts of the partitions of 2n into two squarefree parts.

This page as a plain text file.
%I A280448 #19 Jun 19 2019 21:06:57
%S A280448 1,3,4,4,6,10,9,7,6,20,15,11,17,28,19,11,23,23,25,27,36,48,30,24,12,
%T A280448 55,16,35,39,56,41,20,55,73,55,44,50,81,65,39,53,96,56,71,33,97,63,40,
%U A280448 29,53,88,83,71,63,91,68,98,126,78,87,80,134,65,40,107,147,89,107,119
%N A280448 Sum of the GCDs of the smaller and larger parts of the partitions of 2n into two squarefree parts.
%H A280448 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A280448 a(n) = Sum_{i=1..n} gcd(i,2n-i) * mu(i)^2 * mu(2n-i)^2, where mu is the Möbius function (A008683).
%p A280448 with(numtheory): A280448:=n->add(gcd(2*n-i, i)*mobius(i)^2*mobius(2*n-i)^2, i=1..n): seq(A280448(n), n=1..100);
%t A280448 Table[Sum[GCD[k, 2*n - k]*MoebiusMu[k]^2 * MoebiusMu[2*n - k]^2, {k, 1,
%t A280448 n}], {n, 1, 50}] (* _G. C. Greubel_, Jan 05 2017 *)
%o A280448 (PARI) for(n=1,50, print1(sum(k=1,n, gcd(k,2*n-k) * (moebius(k))^2 *(moebius(2*n-k))^2), ", ")) \\ _G. C. Greubel_, Jan 05 2017
%Y A280448 Cf. A008683, A234307, A280226.
%K A280448 nonn,easy
%O A280448 1,2
%A A280448 _Wesley Ivan Hurt_, Jan 03 2017