A280455 Number of ways to write n as x*(3x-1)/2 + y*(3y+1)/2 + p(z), where x,y,z are nonnegative integers with z > 0, and p(.) is the partition function given by A000041.
1, 2, 3, 3, 3, 3, 3, 5, 4, 5, 2, 4, 4, 5, 5, 4, 6, 5, 5, 3, 4, 6, 7, 3, 5, 3, 8, 3, 8, 7, 6, 5, 4, 7, 3, 4, 6, 8, 4, 5, 4, 12, 5, 8, 5, 6, 4, 5, 8, 5, 4, 7, 7, 6, 5, 7, 8, 5, 9, 6, 6, 5, 10, 8, 6, 3, 7, 8, 7, 4, 6, 7, 9, 3, 5, 4, 8, 7, 9, 13
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 0*(3*0-1)/2 + 0*(3*0+1)/2 + p(1). a(2) = 2 since 2 = 1*(3*1-1)/2 + 0*(3*0+1)/2 + p(1) = 0*(3*0-1)/2 + 0*(3*0+1)/2 + p(2). a(2771) = 1 since 2771 = 35*(3*35-1)/2 + 25*(3*25+1)/2 + p(1). a(9426) = 1 since 9426 = 4*(3*4-1)/2 + 79*(3*79+1)/2 + p(3).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28--Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; p[n_]:=p[n]=PartitionsP[n]; Pen[n_]:=Pen[n]=SQ[24n+1]&&Mod[Sqrt[24n+1],6]==1; Do[r=0;m=1;Label[bb];If[p[m]>n,Goto[cc]];Do[If[Pen[n-p[m]-x(3x-1)/2],r=r+1],{x,0,(Sqrt[24(n-p[m])+1]+1)/6}];m=m+1;Goto[bb];Label[cc];Print[n," ",r];Label[aa];Continue,{n,1,80}]
Comments