This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280457 #14 Jan 24 2017 09:53:54 %S A280457 1,1,0,0,0,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0,0,1,2,1,0,0,0,0,1,2,1,0,0, %T A280457 0,0,1,3,2,0,0,0,0,1,3,3,1,0,0,0,1,4,4,1,0,0,0,1,4,5,2,0,0,0,1,5,7,3, %U A280457 0,0,0,1,5,8,5,1,0,0,1,6,10,6,1,0,0,1,6,12,9,2,0,0,1,7,14,11,3,0,0,1,7,16,15,5 %N A280457 Expansion of Product_{k>=0} (1 + x^(7*k+1)). %C A280457 Number of partitions of n into distinct parts congruent to 1 mod 7. %H A280457 Vaclav Kotesovec, <a href="/A280457/b280457.txt">Table of n, a(n) for n = 0..10000</a> %H A280457 Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015. %H A280457 <a href="/index/Par#partN">Index entries for related partition-counting sequences</a> %F A280457 G.f.: Product_{k>=0} (1 + x^(7*k+1)). %F A280457 a(n) ~ exp(Pi*sqrt(n)/sqrt(21))/(2*2^(1/7)*21^(1/4)*n^(3/4)) * (1 + (13*Pi/(336*sqrt(21)) - 3*sqrt(21)/(8*Pi)) / sqrt(n)). - _Ilya Gutkovskiy_, Jan 03 2017, extended by _Vaclav Kotesovec_, Jan 24 2017 %e A280457 a(37) = 3 because we have [36, 1], [29, 8] and [22, 15]. %t A280457 nmax = 105; CoefficientList[Series[Product[(1 + x^(7 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] %t A280457 nmax = 200; poly = ConstantArray[0, nmax + 1]; poly[[1]] = 1; poly[[2]] = 1; Do[If[Mod[k, 7] == 1, Do[poly[[j + 1]] += poly[[j - k + 1]], {j, nmax, k, -1}]; ], {k, 2, nmax}]; poly (* _Vaclav Kotesovec_, Jan 18 2017 *) %Y A280457 Cf. A000700, A016993, A169975, A261612, A280454. %Y A280457 Cf. A262928, A147599, A281243, A281244. %Y A280457 Cf. A109703, A281245, A281455, A281456, A281457, A281458, A281459. %K A280457 nonn %O A280457 0,24 %A A280457 _Ilya Gutkovskiy_, Jan 03 2017