cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280472 Number of ways to write n as the sum of an octagonal number (A000567), a second octagonal number (A045944), and a strict partition number (A000009).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 4, 3, 6, 4, 4, 4, 4, 6, 3, 4, 4, 6, 6, 4, 3, 4, 5, 3, 4, 5, 5, 3, 7, 7, 4, 4, 5, 7, 6, 5, 7, 4, 6, 5, 2, 6, 4, 4, 3, 7, 4, 4, 6, 9, 7, 4, 8, 4, 6, 4, 6, 7, 5, 6, 5, 6, 9, 3, 5, 6, 5, 5, 7, 6, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 04 2017

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0.
(ii) lim_n a(n)/(log n)^2 = 1/Pi^2.
On the author's request, Prof. Qing-Hu Hou at Tianjin Univ. has verified part (i) of the above conjecture for n up to 10^9.
See also A280455 for a similar conjecture of the author involving the partition function.

Examples

			a(1) = 1 since 1 = 0*(3*0-2) + 0*(3*0+2) + A000009(2).
a(50) = 2 since 50 = 4*(3*4-2) + 1*(3*1+2) + A000009(7) = 4*(3*4-2) + 0*(3*0+2) + A000009(10).
a(1399) = 1 since 1399 = 1*(3*1-2) + 18*(3*18+2) + A000009(32).
		

Crossrefs

Programs

  • Mathematica
    Oct[n_]:=Oct[n]=IntegerQ[Sqrt[3n+1]]&&Mod[Sqrt[3n+1],3]==1;
    q[n_]:=q[n]=PartitionsQ[n];
    Do[r=0;m=2;Label[bb];If[q[m]>n,Goto[cc]];Do[If[Oct[n-q[m]-x(3x-2)],r=r+1],{x,0,(Sqrt[3(n-q[m])+1]+1)/3}];m=m+If[m<3,2,1];Goto[bb];Label[cc];Print[n," ",r];Continue,{n,1,80}]