cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280487 G.f.: Product_{i>=1, j>=1, k>=1, l>=1} 1/(1 - x^(i*j*k*l)).

This page as a plain text file.
%I A280487 #17 Sep 30 2024 21:24:00
%S A280487 1,1,5,9,29,49,135,235,565,995,2177,3821,7900,13728,26974,46606,88128,
%T A280487 150644,276283,467647,835708,1400874,2448818,4065230,6975307,11470265,
%U A280487 19359345,31552473,52488142,84808548,139274675,223191639,362297234,576064732,925295844
%N A280487 G.f.: Product_{i>=1, j>=1, k>=1, l>=1} 1/(1 - x^(i*j*k*l)).
%H A280487 Vaclav Kotesovec, <a href="/A280487/b280487.txt">Table of n, a(n) for n = 0..10000</a>
%H A280487 Lida Ahmadi, Ricardo Gómez Aíza, and Mark Daniel Ward, <a href="https://doi.org/10.1007/s44007-024-00134-w">A unified treatment of families of partition functions</a>, La Matematica (2024). Preprint available as <a href="https://arxiv.org/abs/2303.02240">arXiv:2303.02240</a> [math.CO], 2023.
%F A280487 G.f.: Product_{k>=1} 1/(1 - x^k)^tau_4(k), where tau_4() = A007426. - _Ilya Gutkovskiy_, May 22 2018
%t A280487 nmax=50; CoefficientList[Series[Product[1/(1-x^(i*j*k*l)), {i, 1, nmax}, {j, 1, nmax/i}, {k, 1, nmax/i/j}, {l, 1, nmax/i/j/k}], {x, 0, nmax}], x]
%t A280487 nmax = 50; tau4 = Table[DivisorSum[n, DivisorSigma[0, n/#] * DivisorSigma[0, #] &], {n, 1, nmax}]; s = 1 - x; Do[s *= Sum[Binomial[tau4[[k]], j]*(-1)^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 08 2018 *)
%Y A280487 Cf. A000041, A006171, A007426, A174465, A280486.
%K A280487 nonn
%O A280487 0,3
%A A280487 _Vaclav Kotesovec_, Jan 04 2017