This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280523 #72 Feb 06 2024 17:47:05 %S A280523 1,3,10,30,84,227,603,1589,4172,10936,28646,75013,196405,514215, %T A280523 1346254,3524562,9227448,24157799,63245967,165580121,433494416, %U A280523 1134903148,2971215050,7778742025,20365011049,53316291147,139583862418 %N A280523 a(n) = Fibonacci(2n + 1) - n. %C A280523 Old (and equivalent) definition: these are the indices of records in the Fibonachos sequence A280521: the least k such that A280521(k) = n. %C A280523 Conjecture: a(n) = A215004(2n - 2). - _Peter Kagey_. The conjecture is true. See link for analysis of connections with A215004 and A280521. - _Nathan Fox_, Jan 27 2017 %C A280523 Define the n-th Fibonacci compositions CF(n) by CF(1)={(1)}, CF(2)={(2)}, and CF(n) is 1 adjoined at the end of each composition in CF(n-1) union 2 adjoined to the end of each composition in CF(n-2). The union is disjoint, so |CF(n)| is the n-th Fibonacci number. Define the weight of a composition c by 2^(number of singletons in c). For example, 2122 has 1 singleton and weight 2. Let s(n) be the sum of the weights of CF(n). Conjecture: a(n)= s(2n+4)-s(2n+3). - _George Beck_, Jan 31 2020 %H A280523 Nathan Fox, <a href="/A280523/a280523.pdf">Proof that a(n) = Fibonacci(2n + 1) - n</a>. %H A280523 Murray Tannock, <a href="https://skemman.is/bitstream/1946/25589/1/msc-tannock-2016.pdf">Equivalence classes of mesh patterns with a dominating pattern</a>, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2 %H A280523 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,5,-1). %F A280523 G.f.: -x*(-1+2*x-3*x^2+x^3) / ( (x^2-3*x+1)*(x-1)^2 ). - _R. J. Mathar_, Mar 11 2017 %F A280523 a(n) = 5*a(n-1)-8*a(n-2)+5*a(n-3)-a(n-4). - _Wesley Ivan Hurt_, Apr 26 2021 %e A280523 a(1) = 1 because A280521(1) = 1; %e A280523 a(2) = 3 because A280521(3) = 2; %e A280523 a(3) = 10 because A280521(10) = 3; %e A280523 a(4) = 30 because A280521(30) = 4; %e A280523 a(5) = 84 because A280521(84) = 5; %e A280523 a(6) = 227 because A280521(227) = 6; %e A280523 a(7) = 603 because A280521(603) = 7; %e A280523 a(8) = 1589 because A280521(1589) = 8. %t A280523 Table[Fibonacci[2n + 1] - n, {n, 30}] (* _Alonso del Arte_, Jan 29 2017 *) %t A280523 LinearRecurrence[{5,-8,5,-1},{1,3,10,30},30] (* _Harvey P. Dale_, Feb 06 2024 *) %o A280523 (PARI) F=vector(64,n,fibonacci(n+2)-1); \\ Resize as needed %o A280523 A280521(n)=my(s); while(n, s++; t=setsearch(F,n,1); if(t, n-=F[t-1], return(s))); s %o A280523 first(n)=my(v=vector(n),k,t,mn=1,gaps=n); while(gaps, t=A280521(k++); if(t>=mn && t<=n && v[t]==0, v[t]=k; while(mn<=n && v[mn], mn++); print("a("t") = "k); gaps--)); v \\ _Charles R Greathouse IV_, Jan 04 2017 %Y A280523 Cf. A001519, A215004, A280521. %K A280523 nonn,easy %O A280523 1,2 %A A280523 _Peter Kagey_, Jan 04 2017 %E A280523 Corrected and extended by _Charles R Greathouse IV_, Jan 04 2017 %E A280523 a(26) from _Charles R Greathouse IV_, Jan 09 2017 %E A280523 a(27) from _Charles R Greathouse IV_, Jan 16 2017 %E A280523 Replaced old definition by simple formula established by _Nathan Fox_. - _N. J. A. Sloane_, Jan 30 2017