A280551 Number of n X 5 0..1 arrays with no element equal to more than one of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
2, 87, 325, 832, 1764, 3438, 6386, 11506, 20389, 35757, 62317, 108150, 187115, 322925, 556071, 955574, 1638882, 2805542, 4794088, 8178068, 13927945, 23683803, 40214243, 68187902, 115469449, 195294823, 329919371, 556731676, 938492304
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..1..0. .0..1..0..1..0. .0..0..1..1..1. .0..1..1..0..1 ..1..0..1..0..1. .1..1..0..0..1. .1..1..0..1..0. .1..0..0..1..1 ..0..1..1..0..0. .0..1..0..1..0. .0..0..1..0..0. .0..1..1..0..0 ..1..0..1..0..1. .1..0..1..0..1. .1..1..0..1..1. .1..0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A280554.
Formula
Empirical: a(n) = 6*a(n-1) - 12*a(n-2) + 5*a(n-3) + 12*a(n-4) - 12*a(n-5) - 3*a(n-6) + 6*a(n-7) - a(n-9) for n>12.
Empirical g.f.: x*(2 + 75*x - 173*x^2 - 84*x^3 + 213*x^4 + 193*x^5 - 84*x^6 - 209*x^7 + 64*x^8 + 25*x^9 - 76*x^10 + 2*x^11) / ((1 - x)^3*(1 - x - x^2)^3). - Colin Barker, Feb 13 2019