A280554 T(n,k)=Number of nXk 0..1 arrays with no element equal to more than one of its horizontal and vertical neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
0, 0, 0, 0, 0, 0, 1, 9, 9, 1, 2, 34, 50, 34, 2, 6, 87, 144, 144, 87, 6, 13, 194, 325, 382, 325, 194, 13, 29, 400, 670, 832, 832, 670, 400, 29, 60, 790, 1316, 1666, 1764, 1666, 1316, 790, 60, 122, 1511, 2502, 3182, 3438, 3438, 3182, 2502, 1511, 122, 241, 2830, 4654
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..0..1. .0..1..0..0. .0..1..1..0. .0..1..0..1. .0..1..0..1 ..1..0..1..0. .0..1..0..1. .1..1..0..1. .0..1..0..1. .1..0..1..1 ..0..1..1..0. .1..0..1..0. .0..0..1..0. .1..0..1..0. .0..1..0..0 ..1..0..1..0. .0..0..1..0. .1..1..0..1. .1..1..0..0. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..391
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
k=2: a(n) = 5*a(n-1) -7*a(n-2) -2*a(n-3) +10*a(n-4) -2*a(n-5) -5*a(n-6) +a(n-7) +a(n-8) for n>9
k=3: a(n) = 5*a(n-1) -7*a(n-2) -2*a(n-3) +10*a(n-4) -2*a(n-5) -5*a(n-6) +a(n-7) +a(n-8) for n>10
k=4: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>11
k=5: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>12
k=6: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>12
k=7: a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9) for n>12
Comments