This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A280560 #23 Mar 28 2024 09:04:06 %S A280560 1,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2, %T A280560 -2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2, %U A280560 2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2 %N A280560 a(n) = (-1)^n * 2 if n!=0, with a(0) = 1. %H A280560 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (-1). %F A280560 Euler transform of length 2 sequence [-2, 1]. %F A280560 Moebius transform is length 2 sequence [-2, 4]. %F A280560 a(n) = -2*A033999(n) if n!=0. %F A280560 G.f.: (1 - x) / (1 + x) = 1 / (1 + 2*x / (1 - x)) = 1 - 2*x / (1 + x). %F A280560 E.g.f.: 2*exp(-x) - 1. %F A280560 a(n) = a(-n) for all n in Z. %F A280560 a(n) = A084100(2*n) = A084100(2*n + 1), if n>=0. %F A280560 a(n) = (-1)^n * A040000(n). %F A280560 a(2*n) = A040000(n). %F A280560 Convolution inverse is A040000. %e A280560 G.f. = 1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 2*x^8 - 2*x^9 + ... %t A280560 a[ n_] := (-1)^n (2 - Boole[n == 0]); %t A280560 PadRight[{1},120,{2,-2}] (* _Harvey P. Dale_, Jun 04 2019 *) %o A280560 (PARI) {a(n) = (-1)^n * if(n, 2, 1)}; %o A280560 (Magma) [n eq 0 select 1 else 2*(-1)^n: n in [0..75]]; // _G. C. Greubel_, Jul 29 2018; Mar 28 2024 %o A280560 (SageMath) [2*(-1)^n -int(n==0) for n in range(76)] # _G. C. Greubel_, Mar 28 2024 %Y A280560 Cf. A033999, A040000, A084100. %K A280560 sign,easy %O A280560 0,2 %A A280560 _Michael Somos_, Jan 05 2017